Justin Randolph N. Labios | James Harris R. Bajande | Bren Daniel J. Ebriega | Mike Lester D. Uy | Gil Nonato C. Santos
In this study, the following quantitative properties of carbon nanotubes were explored: the chiral vectors, which are numbers that describe the carbon nanotubes’ structure, and properties such as chemical potential energy. The objective of this study is to simulate various carbon nanotube structures with chiral vectors that range from (0-3) and find a relation between these chiral vectors and the chemical potential energy. Using the software Avogadro, 12 carbon nanotubes with different chiral vectors (n, m) were simulated. These carbon nanotubes were of different lengths to keep the number of atoms in the molecules as close to 100 as possible. Avogadro was also used to calculate the theoretical chemical potential energy of these molecules. Using multiple correlation to analyze the simulations’ data, an R2 value of 0.632 was obtained, which indicates a small positive linear association between them.