Michael Angelo B. De Chavez | Danise B. Chan | John Steven D. Ablong | Luzviminda A. Dinglasan | Gil Nonato C. Santos
In this study, chitin and N/Mn-doped carbon nanostructures were fabricated and characterized for thin film solar cell (TFSC) applications. Chitin, which has high heat resistivity and UV-Vis absorption peak of 250-750nm (Azofeifa, et al., 2012), was transformed into nanomaterials. These were combined with carbon nanostructures (CNS), which are known for high efficiency in solar cells. Chitin from local crab shells was extracted by deproteinization, demineralization and decolorization. Chitin and N/Mn-doped carbon were fabricated into nanomaterials via Horizontal Vapor Phase Growth Technique (Santos, et al., 2009). Their morphology was determined using SEM imaging software, and their elemental and atomic compositions by EDX Oxford Spectroscopy. Photoconductivity was measured with and without solar illumination using fluke multimeter. The efficiency was calculated based on ? = (Pmax/E x AC) x100. The surface morphology of chitin was observed to be nanowires with physical size of 45nm while N/Mn-doped CNS was observed to be nanoflakes and measured at 84.6nm (N) and 92.73nm (Mn), respectively. Chitin contained 31.55% nitrogen; N-CNS, 31.73% nitrogen and Mn-CNS, 2.13% manganese. I-V characteristics yielded short-circuit current of 0.08mA, open-circuit voltage of 120.1mV, maximum power of 9.61mW and efficiency as high as 16.02%. Chitin nanowires increased the TFSC’s efficiency by 6.69% due to its high photoelectric properties. The results showed that chitin nanowires and N/Mn-CNS comprise a promising TFSC that uses an abundant biopolymer and an innovative technique for green production of electrical energy. Organic–inorganic solar thin films with efficiencies up to 9% are practicable devices for sustainable development and energy crisis.
1. Abdollahi, Y., Abdullah, A., Zainal, Z., and Yusof, N. (2011). Synthesis and characterization of Manganese-doped ZnO nanoparticles. International Journal of Basic & Applied Science IJBAS-IJENS. Vol:11 No: 06 62. pp. 62-69.
2. Adhikari, S., Kayastha, M., Ghimere, D., Aryah, H., Adhikary, S., Takeuchi, Murakami, K., Kawashimo, Y., Uchida, H., Wakita, K. and Umeno, M. (2013) Improved Photovoltaic Properties of Heterjunction Carbon Based Solar Cell. Journal of Surface Engineered Materials and Advanced Technology. pp. 178-183. DOI: 10.4236/jsemat.2013.33024.
3. Arbia, W., Arbia, L., Adour, L., and Amrane A. (2013) Chitin Extraction from Crustacean Shells Using Biological Methods – A Review. Food Technology. Biotechnology. Chapter 51, pp. 12-25.
4. Azofeifa, D., Arguedas, H. and Vargas, W. (2012). Optical Properties of chitin and chitosan biopolymers with application to structural color analysis. Optical Materials. pp. 175-183. DOI: 10.1016/j.optmat.2012.07.024.
5. Bao, Zhenan and Vosgueritchian, Michael. (2013). The first demonstration of carbon-based solar cell. SPIE Newroom. http://spie.org/documents/Newsroom/Imported/004711/004711_10.pdf.
6. M. Bernardi, J. Lohrman, P. Kumar, A. Kirkeminde, N. Ferralis, J. Grossman and S. Ren, (2012). Nanocarbon-based Photovoltaics. http://arxiv.org/ftp/arxiv/papers/1206/1206.5042.pdf.
7. Changsha, Z., Xiang, Z., Wenbo, P., Mingji, S., Shiyong, L., Haibo, X., Zhanguo, W., Jun, C.,
8. and Shuangqing, W. (2009). Influence of zinc phthalocyanines on photoelectrical properties of hydrogenated amorphous silicon. Journal of Semiconductors. Vol. 30, No. 8.
9. Chen, C., Li, D., Deng, Q. and Zheng, B. (2012) Optically Transparent Biocomposites: Polymethylmethacrylate reinforced with high-performance chitin nanofibers. BioResources. 7(4) pp. 5960-5971.
10. Chen, T., Cai, Z., Yang, Z., Li, Li., Sun, X., Yu, A., Kia, H. and Peng, H. (2011), Nitrogen-doped Carbon Nanotube Composite Fiber with a Core-Sheath Structure for Novel Electrodes. DOI: 10.1002.
11. Cheng, Zheng dong (2011). Solar Nanocomposite Materials. http://cdn.intechopen.com/pdfs/17087/InTech-Solar_nanocomposite_materials.pdf.
12. Dilli, Zeynep (2009). Examples on Doping and Fermi Levels. ENEE 313, Spr’09. Supplement II. http://www.ece.umd.edu/~dilli/courses/enee313_spr09/files/supplement2_doping_EFexamples.pdf
13. Dhibar, S., Bhattacharya, P., Hatui, G., Sahoo, S., and Das, C. (2014). Transition Metal-Doped Polyaniline/Single-Walled Carbon Nanotubes Nanocomposites: Efficient Electrode Material for High Performance Supercapacitors. ACS Sustainable Chem. Eng., Article ASAP. DOI: 10.1021/sc5000072.
14. Figueiredo, M., Cunha, S., Martins, G., Freitas, J., Judas, F., and Figueiredo, H. (2011). Influence of hydrochloric acid concentration on the demineralization of cortical bone. DOI: 10.1016.
15. Heo, J., Im, S., Noh, J., Mandal, T., Lim, C., Chang, J., Lee, Y., Kim, H., Sarkar, A., Nazeeruddin, M., Grazel, M. and Seok, S. (2013). Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. DOI: 10.1038.
16. Huyen, Duong Ngoc (2011). Carbon Nanotubes and Semiconducting Polymer Nanocomposites. Intechopen. pp. 469-486. Vietnam. DOI: 10.5772/21461.
17. Keenan, Chris (2012). Breaking down Crab Shells Could Improve Solar Technology. http://cleantechnica.com/2012/02/27/breaking-down-crab-shells-could-improve-solar-technology.
18. Kole, A and Kumbhakar, P. (2011). Effect of manganese doping on the photoluminescence characteristics of chemically synthesized zinc sulfide nanoparticles. Appl Nanosci, Volume 2, pp.15-23.
19. Kordatos, K., Ntziouni, A., Theodoratu, A., Perraki, M., Terrones, M. and Kasselouri-Rigopoulou, V. (2010). Synthesis and Characterization of Nitrogen-doped Carbon Nanotubes. Material Science Forum, Vols. 636-637, pp. 714-721.
20. Khoushab, F. and Yamabhai, M. (2010). Chitin Research Revisited. Marine Drugs Open Access. DOI: 10.3390
21. Lu, Y., Zhang, F., Zhang, T., Leng, K., Zhang, L., Yang, X., Ma, Y., Huang, Y., Zhang, M., and Chen, Y. (2013). Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. SciVerse Science Direct. Carbon 63. pp. 508-516.
22. Luna-López, Aceves-Mijares, Carrillo-López, Morales-Sánchez, Flores-Gracia and Valerdi. (2012). UV-Vis Photodetector with Silicon Nanoparticles. InTech. http://cdn.intechopen.com/pdfs-wm/33510.pdf.
23. Majeed, S., Zhao, J., Zhang, L., Anjum, S., Liu, Z. and Xu, G. (2013). Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials. Nanotechnology Reviews. pp. 1-22. DOI: 10.1515/ntrev-2013-0007.
24. Mittal, Vikas (2011). Bio-nanocomposites: future high-value materials. The Petroleum Institute, Chemical Engineering Department. Switzerland. pp. 1-27. DOI: 10.1093.
25. Morawski, A., Nejman, E., Przepiorski, J., Kordala, R, and Pemak, J. (2013). Cellulose-TiO2 nanocomposite with enhanced UV-Vis light absorption. Volume 20, Issue 3, pp 1293-1300.
26. Ole, A., Abrasaldo, P.M.B., Castillon, G., Ladines, A., De Los Reyes, R., Santos, G.N.C., Quiroga, R.V. (2010). Synthesis of TiO2 Nanomaterials by Modified Horizontal Vapor Phase Growth Technique. http://www.dlsu.edu.ph/conferences/microsphil/_pdf/SamplePaper.pdf.
27. Plotkin, M., Hod, I., Zaban, A., Boden, S., Bagnall, D., Galushko, D. and Bergman, D. (2010). Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Naturwissenschaften. DOI 10.1007.
28. Povea, M., Monal, W., Rodriguez, J., Pat, M., Rivero, N. and Covas, C. (2011). Interpenetrated Chitosan- Poly(Acrylic Acid-Co-Acrylamide) Hydorgels. Synthesis, Characterization and Sustained Protein Release Studies. Materials Sciences and Application pp. 509-520. DOI:10.4236.
29. Pristavita, R., Meunier, J. and Berk, D. (2011). Carbon Nano-Flakes Produced by an Inductively Coupled Thermal Plasma System for Catalyst Applications. Plasma Chem Plasma Process Vol. 31, Issue 2. pp. 393–403.
30. Qurashi, Ahsanulhaq. (2011). Chitin and Chitosan Polymer Nanofibrous Membranes and Their Biological Applications. Handbook of Bioplastics and Biocomposites Engineering Applications.http://books.google.com.ph/books?id=EMh827DUbGgC&pg=PA358&lpg=PA358&dq=chitin +nanowires&source=bl&ots=urnB4eWkBv&sig=gtDPD7yct5Lm8a7jD2saMRmgavQ&hl=en&sa=X&ei=9 z5VUpibHsWwiQf8ioDoCA&ved=0CDQQ6AEwAg#v=onepage&q=chitin%20nanowires&f=false.
31. Ramuz, P., Vosgueritchian, M., Wei, P., Wang, C., Gao, Y., Wu, Y., Chen, Y. and Bao, Z. (2012). Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. China. pp. 10384 – 10395. DOI: 10.1021.
32. Rani, Pooja and Jindal, V.K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 2013, Chapter 3, pp. 802-812.
33. Salimian, S. and Shayesteh, F. (2010). Luminescence Properties of Manganese Doped CdS Nanoparticles under Various Synthesis Conditions. Acta Physica Polonica A. Vol. 118. No. 4. pp. 633 – 636.
34. Sanctis, Dr. Oscar de. (2010). Fundamentals and Application of Chemical Solution Techniques for Thin Films Synthesis. http://www.tandar.cnea.gov.ar/eventos/Nano2010/de%20Sanctis.pdf.
35. Saraf, Rohit (2012). High Efficiency and cost effective Cu2S/CdS thin-film solar cell. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE). India. Volume 2, Issue 4. pp. 47-51.
36. Santos, G., Salvador, A., and Quiroga, R. (2009). . Philippines. Horizontal Vapor Phase Growth Technique. http://dlsu.academia.edu/GilNonatoSantos.
37. Sen, S., Sharma, P. ; Solanki, C. and Bandyopadhyaya, R. (2010). Fluorescent manganese-doped zinc sulphide nanoparticles for spectral shifting. Department of Science and Engineering. Mumbai, India. DOI: 10.1109.
38. Sethi, V., Pandey, M., and Shukla, P. (2011). Use of Nanotechnology in Solar PV Cell. International Journal of Chemical Engineering and Applications, Vol. 2, No. 2, April 2011.
39. Shih, W., Jeng, J., Huang, C. and Lo, J. (2011). Enhancing electron field emission of carbon nanoflakes by hydrogen post-annealing process. Volume 22, Issue 9. pp. 1269-1273.
40. Uzun, I. and Topal, G. (2011). Synthesis and Physicochemical Characterization of Chitin Derivatives. Journal of Chemistry. Volume 2013 (2013), Article ID 982638, p. 8.
41. Vatansever, D., Siores, E. and Shah, T. (2012), Alternative Resources of Renewable Energy: Piezoeletric and Photovoltaic Smart Structures. InTech. DOI: 10.5772/50570.
42. Venugopal, Vazhiyil. (2011). Marine Polysaccharides: Food Applications.http://books.google.com.ph/books?id=AJCnhtkMSdYC&pg=PA64&lpg=PA64&dq=potassium+hydroxide+deproteinization&source=bl&ots=exykQ_CvJ2&sig=
BjJg2toIGVzITx53aUje9Axu6Z4&hl=en&sa=X&ei=KM_DUvbhFsmjigeHYHIDA&ved=0CFEQ6AEwBg#v=onepage&q=
potassium%20hydroxide%20deproteinization&f=false.
43. Vikas, P., Monti, M., Puglia, D., Rallini, M., Santulli, C., Sarasini, F., Thomas, S. and Kennedy J. (2012). Mechanical and thermal properties of crab chitin reinforced carboxylated SBR composites. Express Polymer Letters. Vol. 6, No. 5 pp. 396-409.
44. Weaver, P., Doguzhaeva, L., Lawver, D., Tacker, R., Ciampaglio, C., Crate, J.and Zheng, W. (2011). Characterization of Organics Consistent with b-Chitin Preserved in the Late Eocene Cuttlefish Mississaepia mississippiensis. Plos One Open Access. Volume 6. DOI: 10.1371.
45. Yen, M., Yang, J. and Mau, J. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymer. Taiwan. Volume 75, Issue 1. pp. 15-21.