PHYTOCHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF SELECTED ETHNOMEDICINAL PLANTS AGAINST GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA
Ana Maria C. Ventura
Discipline: Health
Abstract:
The increasing number of antibiotic-resistant bacteria is considered as one of the greatest threats to mankind. Unfortunately, a very small number of antibiotics are being developed to address this problem. Imperata cylindrica, Heliotropium luzonicum vine and Alstonia scholaris (L.) are medicinal plants used by the Bugkalot tribe in Nagtipunan, Quirino. They were investigated for their antibacterial activity against Gram-positive and Gram-negative bacteria through disc diffusion method. Thin layer chromatography (TLC) was also conducted to identify the types of phytochemicals present in the plant extracts. Results showed that these plants can inhibit bacterial growth. The plant extracts produced zones of inhibition that range from active to very active. H. luzonicum vine and A. scholaris (L.) manifested very active inhibition of E. coli and B. subtilis. Their activity is comparable with the activity of Streptomycin which also showed very active inhibition to the two bacteria. The plant samples were found to contain diverse types of phytochemicals which may explain their antibacterial activity.
References:
- Amenu, D. (2014). Antimicrobial Activity of Medicinal Plant Extracts and Their Synergistic Effect on Some Selected Pathogens. American Journal of Ethnomedicie, 1(1), 18–29.
- Antibiotic Resistance Questions and Answers. (2015). Center for Disease Control and Prevention. https://www.cdc.gov/getsmart/community/about/antibiotic-resistance-faqs.html
- Aguinaldo, A. M., Espeso, E., Guevara, B., & Nonato, M. (2004). Phytochemistry Section. In Beatrice Guevara (Ed.), A Guide Book to Plant Screening: Phytochemical and Biological.University of Sto. Tomas Publishing House. Manila, Philippines
- Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. http://doi.org/10.1016/j.jpha.2015.11.005
- Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences, 78, 431–441. http://doi.org/10.1016/j.lfs.2005.09.012
- Carlson, S. A., & Ferris, K. E. (2000). Augmentation of antibiotic resistance in Salmonella typhimurium DT104 following exposure to penicillin derivatives. Veterinary Microbiology, 73, 25–35.
- Chambers, H. F., & Deleo, F. R. (2010). Waves of Resistance: Staphylococcus aureus in Antibiiotic Era. Nature Reviews Microbiology, 7(9), 629–641. http://doi.org/10.1038/nrmicro2200.Waves
- D’Agata, E. M. C., Dupont-rouzeyrol, M., Magal, P., Olivier, D., & Ruan, S. (2008). The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria. Physiology Review, 3(12), 4–12. http://doi.org/10.1371/journal.pone.0004036
- Fraud, S., Rees, E. L., & Mahenthiralingam, E. (2017). Aromatic alcohols and their effect on Gram- negative bacteria, cocci and mycobacteria. Journal of Antimicrobial Chemotherapy, 51, 1435–1436. http://doi.org/10.1093/jac/dkg246
- Ginovyan, M., Petrosyan, M., & Trchounian, A. (2017). Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complementary and Alternative Medicine, 17(50), 1–9. http://doi.org/10.1186/s12906-017-1573-y
- Inouye, S., Takizawa, T., & Yamaguchi, H. (2001). Antibacterial activity of essential oils and their major constituents. Journal of Antimicrobial Chemotherapy, 47, 565–573.
- Jeon, Y. La, Yang, J. J., Kim, M. J., Lim, G., Cho, S. Y., Park, T. S., … Lee, H. J. (2012). Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation. Journal of Medical Microbiology, 6161, 1766–1769. http://doi.org/10.1099/jmm.0.042275-0
- Jung, Y. K., & Shin, D. (2021). Imperata cylindrica: A Review of Phytochemistry, Pharmacology, and Industrial Applications. Molecules 26, 1454. https://doi.org/ 10.3390/molecules26051454
- Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of Industrial Microbiology & Biotechnology, 43(2), 155–176. http://doi.org/10.1007/s10295-015-1723-5
- Khyade, M. S., & Vaikos, N. P. (2009). Phytochemical and antibacterial properties of leaves of Alstonia scholaris R. Br. African Journal of Biotechnology, 8 (22).
- Kingsley, R. A., Msefula, C. L., Thomson, N. R., Kariuki, S., Holt, K. E., Gordon, M. A., … Dougan, G. (2009). Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Research, 2279–2287. http://doi.org/10.1101/gr.091017.109.
- Maddox, C. E., & Laur, L. M. (2010). Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa. Current Microbiology, 69, 53–58. http://doi.org/10.1007/s00284-009-9501-0
- McGann, P., Snesrud, E., Maybank, R., Corey, B., Ong, A. C., Clifford, R., … Schaecher, K. E. (2016). Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First report of mcr-1 in the USA. Antimicrobal Agents and Chemothrapy, (May). http://doi.org/10.1128/AAC.01103-16
- Michael, C. A., Dominey-howes, D., Labbate, M., Maria, C., & Elisabeth, J. (2014). The antimicrobial resistance crisis: causes, consequences, and management. Frontiers in Public Health, 2, 1–8. http://doi.org/10.3389/fpubh.2014.00145
- Pandey, A., & Agnihotri, V. (2015). Antimicrobials from medicinal plants: Research initiatives, challenges, and the future prospects. In V. K. Gupta, M. G. Tuohy, M. Lohani, & A. O’Donovan (Eds.), Biotechnology of Bioactive Compounds: Sources and Applications (First Edit, pp. 123–150). John Wiley & Sons, Ltd. http://doi.org/10.1002/9781118733103.ch5
- Pantosti, A., Sanchini, A., & Monaco, M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiology, 2(3), 323–334. http://doi.org/10.2217/17460913.2.3.323
- Penchovsky, R., & Traykovska, M. (2015). Designing drugs that overcome antibacterial resistance: where do we stand and what should we do ? Expert Opinion in Drug Discovery, 10(8). http://doi.org/10.1517/17460441.2015.1048219
- Piddock, L. J. V. (2012). The crisis of no new antibiotics — what is the way forward ? The Lancet Infectious Diseases, 249–253. http://doi.org/10.1016/S1473-3099(11)70316-4
- Pourmorad, F., Hosseinimehr, S. J., & Shahabimajd, N. (2006). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(11), 1142–1145.
- Prescott, L. M., Harley, J. P. & Klein, D. A. (2002). Food and Industrial Microbiology. In: Microbiology 5th Edition pp 125 – 964. The WCB McGraw-Hill companies, Boston, USA.
- Quinto, E., & Santos, M. A. (2004). Microbiology Section. In Beatrice Guevara (Ed.), A Guide Book to Plant Screening: Phytochemical and Biological. University of Sto. Tomas Publishing House. Manila, Philippines
- Ravi, S., Kaleena, P. K., Babu, M., Janaki, A. & Velu, K. (2019). Antibacterial and Antioxidant Activity of Imperata cylindrica (L.) Raeusch. International Journal of Research and Analytical Reviews, 6(2). E-ISSN 2348-1269, P- ISSN 2349-5138
- Razmavar, S., Abdulla, M. A., Ismail, S. B., & Hassandarvish, P. (2014). Antibacterial Activity of Leaf Extracts of Baeckea frutescens against Methicillin-Resistant Staphylococcus aureus. BioMed Research International, 2014. http://doi.org/http://dx.doi.org/10.1155/2014/521287
- Rossolini, G. M., Arena, F., Pecile, P., & Pollini, S. (2014). Update on the antibiotic resistance crisis. Current Opinion in Pharmacology, 18, 56–60. http://doi.org/10.1016/j.coph.2014.09.006
- Sengupta, S., Chattopadhyay, M. K., & Grossart, H. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology, 4(March), 1–13. http://doi.org/10.3389/fmicb.2013.00047
- Singh, S. B., & Barrett, J. F. (2006). Empirical antibacterial drug discovery — Foundation in natural products. Biochemical Pharmacology, 71, 1006–1015. http://doi.org/10.1016/j.bcp.2005.12.016
- Tadesse, D. A., Zhao, S., Tong, E., Ayers, S., Singh, A., Bartholomew, M. J., & Mcdermott, P. F. (2012). Antimicrobial Drug Resistance in Escherichia coli from Humans. Emerging Infectious Diseases, 18(5), 741–749. http://doi.org/http://dx.doi.org/10.3201/eid1805.111153
- Taleb-contini, S. H., Salvador, M. J., Watanabe, E., & Ito, I. Y. (2003). Antimicrobial activity of flavonoids and steroids isolated from two Chromolaena species. Brazilian Journal of Pharmaceutical Sciences Vol., 39(4), 403–408.
- The History of Antibiotics. (2015). American Academy of Pediatrics. https://www.healthychildren.org/English/health-issues/conditions/treatments/Pages/The-History-of-Antibiotics.aspx
- Valdez, C.G., & Carig, E. (2012). Traditional Medicines of Bugkalots in Quirino. (Unpublished manuscript)
- Ventola, C. L. (2015). The Antibiotic Resistance Crisis Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277–283.
- World Health Organization. (2017). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: WHO Press. http://www.who .int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
- Wright, G. D. (2014). Something old, something new: revisiting natural products in antibiotic drug discovery 1. Canadian Journal of Microbiology, 154(January), 147–154.
- Zamperini, C., Maccari, G., Deodato, D., Pasero, C., Agostino, I. D., & Orofino, F. (2017). Identification, synthesis and biological activity of alkyl- guanidine oligomers as potent antibacterial agents. Scientific Reports, 1–11. http://doi.org/10.1038/s41598-017-08749-6