HomeQSU Research Journalvol. 9 no. 1 (2020)

PHYTOCHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF SELECTED ETHNOMEDICINAL PLANTS AGAINST GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA

Ana Maria C. Ventura

Discipline: Health

 

Abstract:

The increasing number of antibiotic-resistant bacteria is considered as one of the greatest threats to mankind. Unfortunately, a very small number of antibiotics are being developed to address this problem. Imperata cylindrica, Heliotropium luzonicum vine and Alstonia scholaris (L.) are medicinal plants used by the Bugkalot tribe in Nagtipunan, Quirino. They were investigated for their antibacterial activity against Gram-positive and Gram-negative bacteria through disc diffusion method. Thin layer chromatography (TLC) was also conducted to identify the types of phytochemicals present in the plant extracts. Results showed that these plants can inhibit bacterial growth. The plant extracts produced zones of inhibition that range from active to very active. H. luzonicum vine and A. scholaris (L.) manifested very active inhibition of E. coli and B. subtilis. Their activity is comparable with the activity of Streptomycin which also showed very active inhibition to the two bacteria. The plant samples were found to contain diverse types of phytochemicals which may explain their antibacterial activity.



References:

  1. Amenu, D. (2014). Antimicrobial Activity of Medicinal Plant Extracts and Their Synergistic Effect on Some Selected Pathogens. American Journal of Ethnomedicie1(1), 18–29.
  2. Antibiotic Resistance Questions and Answers. (2015). Center for Disease Control and Prevention. https://www.cdc.gov/getsmart/community/about/antibiotic-resistance-faqs.html
  3. Aguinaldo, A. M., Espeso, E., Guevara, B., & Nonato, M. (2004). Phytochemistry Section. In Beatrice Guevara (Ed.), A Guide Book to Plant Screening: Phytochemical and Biological.University of Sto. Tomas Publishing House.  Manila, Philippines
  4. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis6(2), 71–79. http://doi.org/10.1016/j.jpha.2015.11.005
  5. Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences78, 431–441. http://doi.org/10.1016/j.lfs.2005.09.012
  6. Carlson, S. A., & Ferris, K. E. (2000). Augmentation of antibiotic resistance in Salmonella typhimurium DT104 following exposure to penicillin derivatives. Veterinary Microbiology73, 25–35.
  7. Chambers, H. F., & Deleo, F. R. (2010). Waves of Resistance: Staphylococcus aureus in Antibiiotic Era. Nature Reviews Microbiology7(9), 629–641. http://doi.org/10.1038/nrmicro2200.Waves
  8. D’Agata, E. M. C., Dupont-rouzeyrol, M., Magal, P., Olivier, D., & Ruan, S. (2008). The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria. Physiology Review3(12), 4–12. http://doi.org/10.1371/journal.pone.0004036
  9. Fraud, S., Rees, E. L., & Mahenthiralingam, E. (2017). Aromatic alcohols and their effect on Gram- negative bacteria, cocci and mycobacteria. Journal of Antimicrobial Chemotherapy51, 1435–1436. http://doi.org/10.1093/jac/dkg246
  10. Ginovyan, M., Petrosyan, M., & Trchounian, A. (2017). Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complementary and Alternative Medicine17(50), 1–9. http://doi.org/10.1186/s12906-017-1573-y
  11. Inouye, S., Takizawa, T., & Yamaguchi, H. (2001). Antibacterial activity of essential oils and their major constituents. Journal of Antimicrobial Chemotherapy47, 565–573.
  12. Jeon, Y. La, Yang, J. J., Kim, M. J., Lim, G., Cho, S. Y., Park, T. S., … Lee, H. J. (2012). Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation. Journal of Medical Microbiology6161, 1766–1769. http://doi.org/10.1099/jmm.0.042275-0
  13. Jung, Y. K., & Shin, D. (2021). Imperata cylindrica: A Review of Phytochemistry, Pharmacology, and Industrial Applications. Molecules 26, 1454. https://doi.org/ 10.3390/molecules26051454
  14. Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of Industrial Microbiology & Biotechnology43(2), 155–176. http://doi.org/10.1007/s10295-015-1723-5
  15. Khyade, M. S., & Vaikos, N. P. (2009). Phytochemical and antibacterial properties of leaves of Alstonia scholaris R. Br. African Journal of Biotechnology, 8 (22).
  16. Kingsley, R. A., Msefula, C. L., Thomson, N. R., Kariuki, S., Holt, K. E., Gordon, M. A., … Dougan, G. (2009). Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Research, 2279–2287. http://doi.org/10.1101/gr.091017.109.
  17. Maddox, C. E., & Laur, L. M. (2010). Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa. Current Microbiology69, 53–58. http://doi.org/10.1007/s00284-009-9501-0
  18. McGann, P., Snesrud, E., Maybank, R., Corey, B., Ong, A. C., Clifford, R., … Schaecher, K. E. (2016). Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First report of mcr-1 in the USA. Antimicrobal Agents and Chemothrapy, (May). http://doi.org/10.1128/AAC.01103-16
  19. Michael, C. A., Dominey-howes, D., Labbate, M., Maria, C., & Elisabeth, J. (2014). The antimicrobial resistance crisis: causes, consequences, and management. Frontiers in Public Health2, 1–8. http://doi.org/10.3389/fpubh.2014.00145
  20. Pandey, A., & Agnihotri, V. (2015). Antimicrobials from medicinal plants: Research initiatives, challenges, and the future prospects. In V. K. Gupta, M. G. Tuohy, M. Lohani, & A. O’Donovan (Eds.), Biotechnology of Bioactive Compounds: Sources and Applications (First Edit, pp. 123–150). John Wiley & Sons, Ltd. http://doi.org/10.1002/9781118733103.ch5
  21. Pantosti, A., Sanchini, A., & Monaco, M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiology2(3), 323–334. http://doi.org/10.2217/17460913.2.3.323
  22. Penchovsky, R., & Traykovska, M. (2015). Designing drugs that overcome antibacterial resistance: where do we stand and what should we do ? Expert Opinion in Drug Discovery10(8). http://doi.org/10.1517/17460441.2015.1048219
  23. Piddock, L. J. V. (2012). The crisis of no new antibiotics — what is the way forward ? The Lancet Infectious Diseases, 249–253. http://doi.org/10.1016/S1473-3099(11)70316-4
  24. Pourmorad, F., Hosseinimehr, S. J., & Shahabimajd, N. (2006). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology5(11), 1142–1145.
  25. Prescott, L. M., Harley, J. P. & Klein, D. A. (2002). Food and Industrial Microbiology. In: Microbiology 5th Edition pp 125 – 964. The WCB McGraw-Hill companies, Boston, USA.
  26. Quinto, E., & Santos, M. A. (2004). Microbiology Section. In Beatrice Guevara (Ed.), A Guide Book to Plant Screening: Phytochemical and Biological. University of Sto. Tomas Publishing House.  Manila, Philippines
  27. Ravi, S., Kaleena, P. K., Babu, M., Janaki, A. & Velu, K. (2019). Antibacterial and Antioxidant Activity of Imperata cylindrica (L.) Raeusch. International Journal of Research and Analytical Reviews, 6(2). E-ISSN 2348-1269, P- ISSN 2349-5138
  28. Razmavar, S., Abdulla, M. A., Ismail, S. B., & Hassandarvish, P. (2014). Antibacterial Activity of Leaf Extracts of Baeckea frutescens against Methicillin-Resistant Staphylococcus aureus. BioMed Research International2014http://doi.org/http://dx.doi.org/10.1155/2014/521287
  29. Rossolini, G. M., Arena, F., Pecile, P., & Pollini, S. (2014). Update on the antibiotic resistance crisis. Current Opinion in Pharmacology18, 56–60. http://doi.org/10.1016/j.coph.2014.09.006
  30. Sengupta, S., Chattopadhyay, M. K., & Grossart, H. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology4(March), 1–13. http://doi.org/10.3389/fmicb.2013.00047
  31. Singh, S. B., & Barrett, J. F. (2006). Empirical antibacterial drug discovery — Foundation in natural products. Biochemical Pharmacology71, 1006–1015. http://doi.org/10.1016/j.bcp.2005.12.016
  32. Tadesse, D. A., Zhao, S., Tong, E., Ayers, S., Singh, A., Bartholomew, M. J., & Mcdermott, P. F. (2012). Antimicrobial Drug Resistance in Escherichia coli from Humans. Emerging Infectious Diseases18(5), 741–749. http://doi.org/http://dx.doi.org/10.3201/eid1805.111153
  33. Taleb-contini, S. H., Salvador, M. J., Watanabe, E., & Ito, I. Y. (2003). Antimicrobial activity of flavonoids and steroids isolated from two Chromolaena species. Brazilian Journal of Pharmaceutical Sciences Vol.39(4), 403–408.
  34. The History of Antibiotics. (2015). American Academy of Pediatrics. https://www.healthychildren.org/English/health-issues/conditions/treatments/Pages/The-History-of-Antibiotics.aspx
  35. Valdez, C.G., & Carig, E. (2012). Traditional Medicines of Bugkalots in Quirino. (Unpublished manuscript)
  36. Ventola, C. L. (2015). The Antibiotic Resistance Crisis Part 1: Causes and Threats. Pharmacy and Therapeutics40(4), 277–283.
  37. World Health Organization. (2017). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: WHO Press. http://www.who .int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  38. Wright, G. D. (2014). Something old, something new: revisiting natural products in antibiotic drug discovery 1. Canadian Journal of Microbiology154(January), 147–154.
  39. Zamperini, C., Maccari, G., Deodato, D., Pasero, C., Agostino, I. D., & Orofino, F. (2017). Identification, synthesis and biological activity of alkyl- guanidine oligomers as potent antibacterial agents. Scientific Reports, 1–11. http://doi.org/10.1038/s41598-017-08749-6