HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 4 no. 6 (2023)

Utilization of Radioactive Contaminated EAF Dust as Material for Making Paving Block

Dwi Nowo Martono | Haruki Agustina

 

Abstract:

Electric arc furnace dust, due to steel fabrication by-products, some of that material has been contaminated with radioactive materials from orphan sources. After calculating the concentration of radionuclide activity, it is known that the material meets the criteria for clearance of application and can be used for other purposes according to the appropriate characteristics. By determining the clearance, EAF dust will be processed through a stabilization/solidification method to be used as a material for making paving blocks. Through elemental analysis of EAF dust using the Micro-XRF method, it is known that sample 1 has a Ca content of 3.9%, CaO is 5.51%, Si is 0.64%, and SiO2 is 1.36%, while sample 2 has Ca content. 4.8%, CaO 6.74% Si 0.63% and SiO2 1.34%. The compressive strength test results based on Indonesian National Standard (SNI) 03-0691-1996 give the results of paving blocks included in quality D with a value of 9.2 MPa which can be used for parks or other purposes. In the calculation of cost savings analysis, determining the clearance for EAF dust can provide cost savings of Rp. 205,562,000 compared to if it had to be managed as radioactive waste. The production cost for one paving block using a mixture of EAF dust is Rp. 2,213.77 or Rp. 97,405.88 for units per m2.



References:

  1. Alsheltat, M. Fathi, & Elfigih, M. A. (2023). Effects Of Electric Arc Furnace Slag Powder And Fly Ash Within Ternary Waste Blend On Performance Of Concrete. Open Ceramics, 14, 100359. https://doi.org/10.1016/j.oceram.2023.100359
  2. Amaral, L. F., Carvalho, J. P. R. G. De, Silva, B. M. Da, Delaqua, G. C. G., Monteiro, S. N., & Vieira, C. M. F. (2019). Development Of Ceramic Paver With Ornamental Rock Waste. Journal Of Materials Research And Technology, 8(1), 599–608. https://doi.org/10.1016/j.jmrt.2018.05.009
  3. Araujo, F. S. M., Llano, I. T., Fantucci, H., Nunes, E. B., & Santos, R. M. (2022). Recycling Strategies Of Mine Tailing, With Environmental, Safety, Technical And Materials Considerations.
  4. Bamigboye, G. O., Bassey, D. E., Olukanni, D. O., Ngene, B. U., Adegoke, D., Odetoyan, A. O., Kareem, M. A.,
  5. Enabulele, D. O., & Nworgu, A. T. (2021). Waste Materials In Highway Applications: An Overview On Generation And Utilization Implications On Sustainability. Journal Of Cleaner Production, 283, 124581. https://doi.org/10.1016/j.jclepro.2020.124581
  6. Boulos, M. I., Jurewicz, J. W., Fauchais, P. L., & Pfender, E. (2023). Plasma In The Waste Treatment Industry. In Handbook Of Thermal Plasmas (Pp. 1739–1804). Springer International Publishing. https://doi.org/10.1007/978-3-030-84936-8_40
  7. Chiu, A. C. F., Akesseh, R., Moumouni, I. M., & Xiao, Y. (2019). Laboratory Assessment Of Rice Husk Ash (RHA) In The Solidification/Stabilization Of Heavy Metal Contaminated Slurry. Journal Of Hazardous Materials, 371, 62–71. https://doi.org/10.1016/j.jhazmat.2019.02.051
  8. Collivignarelli, M. C., Cillari, G., Ricciardi, P., Miino, M. C., Torretta, V., Rada, E. C., & Abbà, A. (2020). The Production Of Sustainable Concrete With The Use Of Alternative Aggregates: A Review. Sustainability, 12(19), 7903. https://doi.org/10.3390/su12197903
  9. De Buzin, P. J. W. K., Heck, N. C., & Vilela, A. C. F. (2017). EAF Dust: An Overview On The Influences Of Physical, Chemical And Mineral Features In Its Recycling And Waste Incorporation Routes. Journal Of Materials Research And Technology, 6(2), 194–202. https://doi.org/10.1016/j.jmrt.2016.10.002
  10. Donald, A. N., Raphael, P. B., Olumide, O. J., & Amarachukwu, O. F. (2022). Environmental Heavy Metal Pollution: Physicochemical Remediation Strategies To The Rescue. Journal Of Environment Pollution And Human Health, 10(2), 31–45.
  11. Endika, Eko; Kurniawandy, A. (2016). Pengaruh Penambahan Silika Fume Pada Campuran Paving Block Terhadap Karakteristik Paving Block. 1–23.
  12. Esther, L. A., Pedro, L. G., Irune, I. V., & Gerardo, F. (2020). Comprehensive Analysis Of The Environmental Impact Of Electric Arc Furnace Steel Slag On Asphalt Mixtures. Journal Of Cleaner Production, 275. https://doi.org/10.1016/j.jclepro.2020.123121
  13. Falciglia, P. P., Romano, S., & Vagliasindi, F. G. A. (2017). Stabilisation/Solidification Of137cs-Contaminated Soils Using Novel High-Density Grouts: Γ-Ray Shielding Properties, Contaminant Immobilisation And A Γrs Index-Based Approach For In Situ Applicability. Chemosphere, 168, 1257–1266. https://doi.org/10.1016/j.chemosphere.2016.10.068
  14. Goyal, S., Siddique, R., Sharma, D., & Jain, G. (2022). Reutilization Of Textile Sludge Stabilized With Low Grade-Mgo As A Replacement Of Cement In Mortars. Construction And Building Materials, 338, 127643. https://doi.org/10.1016/j.conbuildmat.2022.127643
  15. Guo, B., & Sasaki, K. (2022). Stabilization/Solidification Of Radioactive Waste In Geochemical Aspects. In Low Carbon Stabilization And Solidification Of Hazardous Wastes (Pp. 469–482). Elsevier. https://doi.org/10.1016/b978-0-12-824004-5.00012-8
  16. Han, L., Li, J., Xue, Q., Chen, Z., Zhou, Y., & Poon, C. S. (2020). Bacterial-Induced Mineralization (BIM) For Soil Solidification And Heavy Metal Stabilization: A Critical Review. Science Of The Total Environment, 746, 140967. https://doi.org/10.1016/j.scitotenv.2020.140967
  17. He, L., Wang, Z., & Gu, W. (2021). Evolution Of Freeze–Thaw Properties Of Cement–Lime Solidified Contaminated
  18. Soil. Environmental Technology & Innovation, 21, 101189. https://doi.org/10.1016/j.eti.2020.101189
  19. Huang, Z., Liu, K., Duan, J., & Wang, Q. (2021). A Review Of Waste-Containing Building Materials: Characterization Of The Heavy Metal. Construction And Building Materials, 309, 125107. https://doi.org/10.1016/j.conbuildmat.2021.125107
  20. Kehutanan, K. L. H. Dan. (2021). Peraturan Pemerintah Nomor 22 Tahun 2021. Sekretariat Negara Republik Indonesia, 1(078487A), 483.
  21. Masrullita, Perry Burhan, R. Y., & Trihadiningrum, Dan Y. (2018). Stabilization/Solidification Of Waste Containing Heavy Metals And Hydrocarbons Using OPC And Land Trass Cement. Journal Of Ecological Engineering, 19(6), 88–96. https://doi.org/10.12911/22998993/92926
  22. Mohasin, M., Habib, K., & Rao, P. S. (2022). Heavy Metals Pollution In Soil And Their Remediation Techniques: A Review. International Journal Of Environment And Climate Change, 12(1), 1231–1250. http://institutearchives.uk/id/eprint/1872
  23. Nunes, V. A., & Borges, P. H. R. (2021). Recent Advances In The Reuse Of Steel Slags And Future Perspectives As Binder And Aggregate For Alkali-Activated Materials. Construction And Building Materials, 281, 122605. https://doi.org/10.1016/j.conbuildmat.2021.122605
  24. Omran, M., & Fabritius, T. (2017). Effect Of Steelmaking Dust Characteristics On Suitable Recycling Process Determining: Ferrochrome Converter (CRC) And Electric Arc Furnace (EAF) Dusts. Powder Technology, 308, 47–60. https://doi.org/10.1016/j.powtec.2016.11.049
  25. Pusat Teknologi Limbah Radioaktif-BATAN. (2019). Kajian Radiologik Untuk Klierens Bersyarat Terhadap Limbah Ash Furnace Terkontaminasi.
  26. Rajagukguk, A., & Surbakti, B. (2021). Pengaruh Penambahan Limbah Debu Pengolahan Baja ( Dry Dust Collector ) Dan Penambahan Serat Polypropylene Terhadap Sifat Mekanis Beton. Jurnal, Teknik Sipil Universitas Sumatera Utara, 5(1), 1–13.
  27. Rakhimova, N. (2022). Recent Advances In Alternative Cementitious Materials For Nuclear Waste Immobilization: A Review. Sustainability, 15(1), 689. https://doi.org/10.3390/su15010689
  28. Ranjetha, K., Alengaram, U. J., Alnahhal, A. M., Karthick, S., Zurina, W. J. W., & Rao, K. J. (2022). Towards Sustainable Construction Through The Application Of Low Carbon Footprint Products. Materials Today: Proceedings, 52, 873–881. https://doi.org/10.1016/j.matpr.2021.10.275
  29. Rasaki, S. A., Bingxue, Z., Guarecuco, R., Thomas, T., & Minghui, Y. (2019). Geopolymer For Use In Heavy Metals Adsorption, And Advanced Oxidative Processes: A Critical Review. Journal Of Cleaner Production, 213, 42–58. https://doi.org/10.1016/j.jclepro.2018.12.145
  30. Royyan Anrozi, & Yulinah Trihadiningrum. (2017). Kajian Teknologi Dan Mekanisme Stabilisasi/Solidifikasi Untuk Pengolahan Limbah B3. Jurnal Teknik Its, 6 No. 2(2), 456–461.
  31. Sikarwar, V. S., Hrabovský, M., Van Oost, G., PohoĊ™elý, M., & Jeremiáš, M. (2020). Progress In Waste Utilization Via Thermal Plasma. Progress In Energy And Combustion Science, 81, 100873. https://doi.org/10.1016/j.pecs.2020.100873
  32. Singh, P., Roy, A. B. D., & Singh, H. (2022). Mechanical And Durability Properties Of Concrete Incorporating