ALTERNATIVE PROOF OF FRULLANI’S THEOREM AND APPLICATIONS IN EVALUATING FRULLANI INTEGRALS
Paul Vincent E Botin | Michael E Sta. Brigida | Edwin A Balila
Discipline: Mathematics
Abstract:
This article provides an alternative proof for the Frullani integral formula using an approach
different from the existing one. This alternative proof gave us a novel method for evaluating certain improper
integrals of Frullani type. Moreover, the alternative proof also obtained an exciting result relating the Frullani
integral to a specific class of improper double integrals—the alternative proof started by stating and proving
lemmas used as stepping stones to obtain the main proof. An essential condition was also imposed to obtain
the desired result.
References:
- Agnew, R. P. (1942). Limits of integrals. Duke Math. J., 9(1), 10-19.
- Agnew, R. P. (1951). Mean values and Frullani integrals. Proceedings of the American Mathematical Society, 2(2), 237-241.
- Aksoy, A., & Martelli, M. (2002). Mixed partial derivatives and Fubini's theorem. The College Mathematics Journal, 33(2), 126-130.
- Allouche, J. P. (2007). Note on an integral of Ramanujan. The Ramanujan Journal, 14(1), 39-42.
- Arias-de-Reyna, J. (1990). On the theorem of Frullani. Proc. Amer. Math. Soc., 109(1), 165-175.
- Bravo, S., Gonzalez, I., Kohl, K., & Moll, V. H. (2017). Integrals of Frullani type and the method of brackets. Open Mathematics, 15(1), 1-12.
- Ferrar, W.L. (1958). Integral Calculus. Oxford University Press. Iyengar, K. S. K. (1941, January). On Frullani integrals. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 37, No. 1, pp. 9-13). Cambridge University Press.
- Jung, B. (2012). The Cauchy-Frullani Integral Formula Extended to Double Integrals. Mathematical Scientist, 37(2).
- Love, E. R. (1970). Changing the order of integration. Journal of the Australian Mathematical Society, 11(4), 421-432.
- Ostrowski, A. M. (1949). On some generalizations of the Cauchy-Frullani integral. Proc. Nat. Acad. Sci. U.S.A., 35(10), 612-616. Collected Mathematical Papers, IV, pp. 148-152.
- Ostrowski, A.M. (1976). On Cauchy-Frullani Integrals. Comment. Math. Helv. 51(1), 57-91. Collected Mathematical Papers, IV, pp. 349-383.
- Schiff, J. L. (1999). The Laplace transform: theory and applications. Springer Science & Business Media.
- Taylor, A., Mann, R. (1955). Advanced Calculus, Third Edition. Wiley and Sons, Inc. Trainin, J. (2010). Integrating expressions of the form 𝑠𝑖𝑛𝑛𝑥/𝑥𝑚 and others. The Mathematical Gazette, 94(530), 216–223. doi:10.1017/s0025557200006471
- Widder, D. V. (2015). Laplace transform (PMS-6) (Vol. 61). Princeton University Press.
- Wrede, R. & Spiegel, M. (2010). Schaum’s Outline of Advanced Calculus, Third Edition. McGraw-Hill Education.
ISSN 2546-0749 (Online)
ISSN 1908-9058 (Print)