HomeDAVAO RESEARCH JOURNALvol. 7 no. 1 (2006)

Production and Unsaturation Index of Alkenones During Batch and Continuous Cultures of the Coccolithophorid Alga, Emiliania Huxleyi

Joy M. Sorrosa | M. Yamamoto | Y. Shiraiwa

Discipline: Chemistry

 

Abstract:

Emiliania huxleyi (EH2 strain) was grown at 10, 15, 20 and 250C in batch and continuous cultures to assess the factors affecting the changes in the production and the unsaturation index of alkenones. The production of alkenones continued during growth and was greatly stimulated at IOOC where cell growth was greatly suppressed, but not influenced by the changing cell size. Alkenones are chemically and/or biologically stable compound for they can be detected even in broken or dead cells. The UK37 and the ratio between C36:2- ethyl alkenoate (EE) and total C37 alkenones (K37) (EE/K37) changed during growing phase and remained nearly constant during the stationary phase at all temperatures tested in batch cultures. Data in continuous culture showed that the alkenones with 2 double bonds increased at high temperature. While the alkenones with 3 double bonds decreased and the reverse change was clearly observed when temperature was decreased. UK’ 37 changed without any lag when temperature changed and needed approximately 2-6 days to attain the respective levels depending on the difference of temperature given. The final values of UK’ 37 obtained at stationary stage were similar between batch and continuous cultures at each temperature and the values increased with increasing temperature. The results strengthened the suggestion that temperature is the major factor that influences the production and unsaturation of alkenones.



References:

  1. Boon, J. J., van der Meer, F. W., Schuyl, p. J., de Leeuw, J. W. and Schenck, P.  1978. Organic geochemical analyses of core samples from site 362 Walvis Ridge, DSOP Leg 40. Initial Report of the Deep-Sea Drilling Project. 40.627-637.
  2. Brand, L. L. 1982. Genetic and spatial patterns of genetic differentiation in the reproduction rates of the marine coccolithophores Emiliania hux/eyj and Gyphymcapsa oceanica. Limnol. Oceanogr. 2786-245.
  3. Brassell, S. C. 1993. Applications of biomarkers for delineating marine paleoclimatic fluctuations during  the  Pleistocene.  In:  Engel,  M  Macko,  S.A.  (Eds.),  Organic Geochemistry, Plenum Press, New York, pp. 699-738.
  4. Brassell, S. C., Eglinton, G., Marlowe, l. T., ptaufmann U. and Samthein, M., 1986, Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129-133.
  5. Conte, M. H., Thompson, A., Eglinton, G. and Green, J. C., 1995. Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and the related species Gephyrocapsa oceanica. J. Phycol. 31: 272-282.
  6. Conte, M. H., Thompson,A., Lesley, D, and Harris, R.P., 1 ggd. Genetic and physiological influences on the alkenone/alkeoate versus growth temperatures relationship in Emdiania huxleyi and Gephyrocapsa oceanica. Geochim. Cosmochirn. Acta 62: 51-68.
  7. Danbara, A. and Shiraiwa, Y., 1999. The requirement of selenium for the growth or marine coccolithophorids. Emiliania huxley,i, Gephyrocapsa oceanica and Helladosphaera sp. (Prymnesiophyceae). Plant Cell PhysioL 40: 762-766.
  8. Epstein, B. L., Hondt, S. D., Quinn, J. G. and Zhang, J. 1998. An effect of dissolve4 nutrient concentrations on alkenone-based temperature estimates. Paleoceanogr. 1 3: 122-126.
  9. Epstein, B. L., Hondt, S. D. and Hargraves, P.E., 2001. The possible metabolic role ot C37 alkenones in Emiliania huxleyi Org. Geochem. 32: 867-875.
  10. Green, J. C., Heimdal, B. R., Paasche, E. and Moate, R. I gg8. Changes in calcification and the dimensions of coccoliths of Emiliania huxleyi (I-laptophyta) grown at reduced salinities. Phycologia 37; 121-131
  11. Harris, R. p. 1996 Coccolithophorid dynamics: The European Emilianiahuxjeyi programme, EHUX_ J. Mar. syst. 9: 1-11.
  12. de Leeuw, J. W., van der Meer, F. W., Rijpstra, W. l. C. and Schenck, P. A. 1980. On the occurrence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments. In: Douglas, A.G., Maxwell, J.R (Eds.), Advances in Organic Geochemistry 1979, Pergamon Press, Oxford, pp. 211-217.
  13. Liu, C.-P. and Lin, L.-p. 2001 Ultrastructural study and lipid formation of Isochrysis sp. CCMP 1324. Bot         Sin 42: 207-214.
  14. Marlowe, l. T., Brassell, S. C., Eglinton, G. and Green, J. C., 1984. Long chain unsaturated ketones and esters in living algae and marine sediments. Org. Geochem. 6: 135Marlowe, l. T., Brassell, S. C., Eglinton, G. and Green, J. C., 1990. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chem Geol, 88 349-375.
  15. Müller,  P.  J.,  Kirst,  G.,  Ruhland,  G.,  von  storch,  1.  and  Rosen-Melé, A.  1998, calibration of the alkenone paleo-temperature index IJK'37 based on care-tops from eastern South Atlantic and the global ocean (600 N-60CS). Geochim, Cosmochim. Acta. 62: 1722-1757.
  16. Popp, B. N., Kenig, E, wakeham, S. Laws, E. A. and Bidigare, R. R-, 1998. Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability in Emiliania huxleyi? Paleoceanography 1 3' 35-41.
  17. Prahl, F. G., de Lange, G. J., Lyle, M. and Sparrow, M. A, 1989v post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature 341:434-437.
  18. Prahl, E G., Laurel, A., Muehlhausen, A. and Zanhle, D. L., 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. cosmochim_ Acts. 52:2303-2310.
  19. Prahl, F. G. and Wakeham, S. G..1987. Calibration of unsaturation patterns in long- chain ketone compositions for paleotemperature assessment. Nature 330: 367-369.
  20. Rontani, J. E, Cuny, P., Grossi, V. and 3eker, B. 1997. Stability of long-chain alkenones in senescing cells of Emiliania hux/eyi: effect of photochemical and aerobic microbial degradation on the alkenone unsaturation ratio (UK'37). Org. Geochem. 26: 503-50g
  21. Roth, P, 19g4_ Distribution of coccoliths in oceanic sediments. In: Winter, A., Seissar, W.G. (Eds.), Cambridge University Press, pp. 199-217,
  22. Sawada, K., Randa, N., Shiraiwa, Y., Danbara, A. and Montani, S., 1996. Long-chain alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest North pacific, with special reference to the reconstruction af Emiliama huxleyi and Gephyrocapsa oceanica ratios. Org, Gaochem, 24: 751-764.
  23. Sekino, K. and Shiraiwa, Y., 1994. Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophoid, Emiliania huxleyi. Plant Cell Physiol. 35: 353-361
  24. Shiraiwa, Y, Hatano-Sugimot0, Y., and Satoh, M. 2003. Regulation Of intracellular calcification and algal growth by nutrient supply in coccolithophorids_ In: Kobayashi 1.,  and  Ozawa,  H  (eds)  Biomineralization  (BIOM  2001):  Formation;  Diversity, Evolution and Application Tokai university Press, Kanagawa, Tokyo, pp. 241-
  25. Somerville, C., Browse, J. Jaworski, J. G. and Ohlrogge, J. B., 2000 Lipids. In: Buchanan,  8B,  GruiSsem, W.,  Jones,  R.I      (Eds.),  Biochemistry  and  Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Maryland, pp.456-527.
  26. Versteegh, G. J. M., Riegman, R., de Leeuw, J. W. and Jansen, J. H. E, 2001 _ LIC values far Isochrysis galbana as a function of culture temperature, light iniensit; and nutrient concentrations. Org, Geochem- 32 785-794.
  27. Volkman, J. K, Barrett, S. M., Blackburn, S. l. and Sikes, E. L., 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleor.limate. Geochim Cosmochim, Acta 59:513-520.
  28. Volkman,  J.  K.  Eglinton.  G.,  corner,  E.  D.  S.  and  Forsberg,  T.  E.  V.,  1980. Longchain alkenes and alkenones in the marine coccoliihophorid Emiliania huxleyi_ Phytochemistry 19:2619-2622.
  29. Westbroek, P, Brown, C. W., van Bleijswijk, J., Brummer, G. J., Conte, M. H., Egge, J., Fernandez, E., Jordan, R., Knappertsbusch, M., Stefels, J., Veldhuis, M., van der Wal, P. and Young, J., 1993. A model system approach to biological climate forcing' the example of Emi/iania hux/cyi, Global Planet. Change 8:2746.
  30. WinterA.,  Jordan,  R. W.  and  Roth,  P.,  1994  Biogeographyofcoccolithophores  in oceanic waters in: Winter, A., Siesser, W- G. (Eds.), Coccolithophores. Cambridge University Press, pp. 161-17B,
  31. Yamamoto, M., Shiraiwa, Y. and Inouye, 1., 2000. Physiological responses of lipids in Emiliania and Gephyroczpsa oceanica (Haptophyceae) to growth status and their implications for alkenone paleothermometry_ Org. Geochem.31: 799811.