HomeDAVAO RESEARCH JOURNALvol. 14 no. 1 (2023)

Time Series Analysis of Mean Temperature using SARIMA: An example from Davao Oriental, Philippines

Larry M. Ichon | Jerd M. Dela Gente

 

Abstract:

In many practical disciplines, time series analysis, and forecasting—a technique that predicts future values by analyzing past values—play a substantial role. In this paper, the researchers analyze the monthly mean temperature in Davao Oriental from 2010 to 2022 using the SARIMA (Seasonal AutoRegressive Integrated Moving Average) technique. Data from January 2010 to May 2020 were used as the training data set, while data from June 2020 to December 2022 were used as the testing data set. The presentation includes a thorough overview of model selection and forecasting precision. The findings demonstrate that the suggested research strategy achieves good forecasting accuracy. The analysis reveals that the best model which was satisfactory to describe was SARIMA (0,1,3) (2,0,0) [12], and in the month of May 2023, the temperature will be 28.28 0 C. In subsequent work, the researchers hope to expand the number of possible grid search parameter combinations. This method may lead us to models with improved predictive ability. The length of the training set may also affect forecasting accuracy, in addition to the SARIMA model’s parameters. A follow-up study is needed to investigate both hypotheses.



References:

  1. Ayitey,   E.,   Kangah,   J.,   &   Twenefour,   F.   B.(2021).         Sarima         modeling         of monthly  temperature  in  the northern part of Ghana. Asian Journal of Probability and Statistics, 37–45. https://doi.org/10.9734/ajpas/2021/v12i330287
  2. Bollettino,   V.,   Alcayna-Stevens,   T.,   Sharma,M.,  Dy,  P.,  Pham,  P.,  &  Vinck,  P.  (2020).  Public   perception   of   climate   change   and   disaster   preparedness:   Evidence   from    the    Philippines.    Climate    Risk    Management,   30,   100250.   https://doi.org/10.1016/j.crm.2020.100250
  3. Gomez,    N.    (2018).    Climate    change    and    adaptation     on     selected     crops     in     Southern     Philippines.     International Journal of Climate Change Strategies and Management,  7(3),  290–305.  https://doi.org/10.1108/ijccsm-03-2013-0014
  4. Kabbilawsh, P., Sathish Kumar, D., & Chithra,N.    R.    (2020).    Trend    analysis    and    SARIMA  forecasting of mean maximum and mean minimum monthly temperature   for   the   state   of   Kerala,   India. Acta        Geophysica,        68(4),        1161–1174.           https://doi.org/10.1007/s11600-020-00462-9
  5. Lagmay,  M.,  &  Racoma,  B.  A.  (2018).  Lessonsfrom  tropical  storms  Urduja  and  Vinta  disasters    in  the Philippines. Disaster Prevention and Management: An International   Journal,   28(2),   154–170. https://doi.org/10.1108/dpm-03-2018-0077
  6. Lu, J. L. (2022). Correlation of Climate Change Indicators         with         Health         and         Environmental Data   in  the  Philippines. Acta    Medica    Philippina, 56(1).          https://doi.org/10.47895/amp.v56i1.3976Past
  7. Weather     in     Province     of     Davao     Oriental,  Philippines — Yesterday  or  Further  Back.  (1998).  Past  Weather in Province of Davao Oriental, Philippines   —   Yesterday   or   Further   Back.       https://www.timeanddate.com/weather/@1715342/historic
  8. Sabino,  L.,  Pulhin,  J.,  Dizon,  J.,  Espaldon,  M.  V.,    &    Cruz,    R.    V.    (2020).    Climate    variability, change and the   impacts  on  livelihood  vulnerability  of  farming    households    in    Koronadal,    South  Cotabato,  Philippines.  Journal  of  Environmental    Science    and    Management, 42–59.         https://doi.org/10.47125/jesam/2020_sp2/04
  9. Scher,    S.,    &    Messori,    G.    (2019).    How    global        warming        changes        the        difficulty of synoptic weather forecasting. Geophysical       Research       Letters,   46(5),   2931–2939.   https://doi.org/10.1029/2018gl081856
  10. Singh, S. (2021). Global        climate        change. Elsevier. Amsterdam,           Netherlands, ISBN- 9780128230978, p. 3.
  11. Takemi,      T.,      &      Yamasaki,      S.      (2020).      Sensitivity     of     the     intensity     and     structure     of     tropical     cyclones     to     tropospheric       stability       conditions.       Atmosphere,    11(4),    411.    https://doi.org/10.3390/atmos11040411.
  12. Weslati,    O.,    Bouaziz,    M.,    &    Serbaji,    M.M. (2023). Precipitation forecasting and monitoring  in  degraded  land:  A  study  case   in   Zaghouan.   Land,   12(4),   738.   https://doi.org/10.3390/land12040738