HomeDAVAO RESEARCH JOURNALvol. 12 no. 3 (2020)

Effects of shading and soil compaction on the growth, leaf area and biomass allocation of tomatoes (Lycopersicon esculentum)

Edison D. Macusi | Rancil Quin Salang

 

Abstract:

Plants are often exposed to stressors such as shading and soil compaction, influencing their morphology and physiology. This study aimed to determine the effects of shading (e.g. using black, white and transparent cloths) and disturbance on the growth, leaf area, and biomass allocation of plants using tomatoes (Lycopersicon esculentum). The establishment of the study area and gathering of field data were conducted for one month at Davao Oriental State College of Science and Technology (DOSCST), Mati City, Davao Oriental. In the shading experiment, the leaf weight ratio (LWR) of the plants was revealed to be directly proportional to their exposure to sunlight. A similar trend was observed on the specific leaf area (SLA) and leaf area ratio (LAR) values, with the SLA and LAR values higher on the plots with the most shading and decreasing with increasing exposure to sunlight. In the disturbance experiment, the LWR and SLA were observed to be inversely proportional to the intensity of disturbance with higher values reported on the undisturbed plot. A general pattern was observed in terms of biomass allocation in the plant parts; the stems have the bulk of the weight, followed by the leaves while the roots have the least weight. In the shading experiment, the highest biomass was observed on the white fabric-covered plot and the least on the black fabric-covered plot. In the disturbance experiment, the undisturbed plot was observed to have higher biomass than the disturbed plot. These have implications in terms of crop cultivation.



References:

  1. Agnew,  M.  I. and Carrow, R. N. (1985). Soilcompaction      and      moisture      stress      preconditioning    in    Kentucky Bluegrass  I.  Soil  aeration,  water use,  and  root  responses. Agronomy Journal, 77, 872-878.
  2. Almeida     S.     M.    Z.,   Soares, A.   M., Castro,  E.  M.,  Vieira,  C.  V.  and Gajego,  E.  B.  (2005).    Alterações morfológicas    e    alocação    de biomassa  em  plantas  jovens  de espécies  florestais  sob  diferentes condições  de  sombreamento. Ciência Rural, 35, 62-68.
  3. Beemster,   G. T.  S. and  Masle,   J.  (1996). Effects  of    soil    resistance    to    root penetration      on   leaf   expansion   in   wheat   (Triticum   aestivum   L.): composition,  number  and  size  of epidermal  cells  in  mature  blades. Journal    of    Experimental    Botany,47, 1651–1662.
  4. Björkman,  O.  and   Holmgren,   P.  (2006).   Photosynthetic    adaptation    to    light  intensity  in  plants  native  to  shaded and  exposed  habitats. Physiologia Plantarum, 19, 854-859.
  5. Callaway,  R. M. (2007).  Positive Interactions and        interdependence    in        plant    communities. Dordrecht, NL: Springer.
  6. Cornelissen, J. H. C., Lavorel, S.,  Garnier, E.,Díaz,  S.,  Buchmann,  N.,  Gurvich, D.  E.,  Reich,  P.  B.,  Steege,  H.,  Morgan, H.  D.,  Heijden,  M.  G.  A.,  Pausas,  J.  G. and  Poorter,  H.  (2003).  A  handbook of    protocols    for    standardised    and    easy    measurement    of    plant functional     traits     worldwide. Australian   Journal   of   Botany,  51(4), 335-380.
  7. DeJong-Hughes, J., Swan, J. B, Moncrief, J. F.   and  Voorhees,   W.   B.   (2001). Soil compaction:   causes,   effects   and control   (revision).   University   of Minnesota  Extension  Service  BU-3115-E.
  8. Givnish,  T.  J.  (1988).  Adaptation  to  sun  and shade:  a  whole-plant  perspective. Australian  Journal  of  Plant  Physiology,  15, 63-92.
  9. Grime, J. P. (2001). Plant strategies, vegetationprocesses,  and  ecosystem  properties.Second  edition. New York, USA: John Wiley & Sons. 417.
  10. Kasperbauer,    M.    J.   (1987).   Far-red   lightreflection   from   green   leaves   and effects  on    phytochrome-mediated assimilate  partitioning  under  field conditions. Plant Physiology, 8, 350-354.
  11. Koolen,  A.  J.  and  Kuipers,  H.  (1983). Agricultural  soil  mechanics.  Berlin, DE: Springer.
  12. Kozlowski, T. T. (1999). Soil compaction and growth of woody plants. Scandinavian Journal  of  Forest  Research, 14, 596-619.
  13. Maughan, T., Drost, D., Black, B. and Day, S.(2017).  Using  shade  for  fruit  andvegetable  production. All     Current     Publications, 1654.
  14. Passioura,  J.  B.  (2002).  Soil  conditions  andplant   growth. Plant,      Cell      and      Environment, 25, 311– 318.
  15. Rozendaal,  D.  M.  A.,  Hurtado  V.  H.  and Poorter,  L.  (2006).  Plasticity  in  leaf traits  of  38  tropical  tree  species  in response  to  light;  relationships  with light  demand  and  adult  stature. Functional      Ecology,      20,   207–216.
  16. Scholefield,  D.  and  Hall,  D.  M.  (1985). Constricted  growth  of  grass  roots through  rigid  pores. Plant   Soil,  85, 153-162.
  17. Unger,  P.  W.  and  Kaspar,  T.  C.  (1994).  Soil compaction  and  root  growth:  a review. Agronomy  Journal, 86, 759-766.
  18. Valladares,  F.  and  Niinemets,  U.  (2008). Shade   tolerance,   a   key   plant feature     of     complex     nature     and     consequences. Annual      Review      of      Ecology    Evolution    and    Systematics,39(1), 237- 257.
  19. Vojtech,  E.,  Turnbull,  L.  A.,  and  Hector,  A. (2007).    Differences    in    light interception    in    grass    monocultures    predict    short-term    competitive outcomes under productive conditions. Public  Library  of  Science  One,  499(2