HomeDAVAO RESEARCH JOURNALvol. 12 no. 4 (2020)

Printed Self-Learning Module Distribution and Completion Preferences of Grade 7-12 Students of Tagugpo National High School in Davao Oriental, Philippines: A Conjoint Analysis

Bronson Dapa | Gemma Valdez

Discipline: Environmental Science

 

Abstract:

This study was conducted to determine the printed self-learning module distribution and completion preferences of the students of Tagugpo National High School, Tagugpo, Lupon, Davao Oriental, Philippines. It is descriptive survey research wherein one-hundred eighty-four randomly selected student respondents are shown various choices or hypothetical profiles and asked to evaluate these profiles based on their preferences. To determine the overall preference of these students on printed self-learning module distribution and completion, conjoint analysis was done. The analysis revealed that students from Tagugpo National High School expressed a preference for their modules to be printed in booklet form, distributed within their respective barangays on Mondays, and collected at the conclusion of each quarter. They also preferred to be given only four subjects per week with a two-hour duration each and accomplish only the activities found in the modules with no summative tests. This study recommends that students may be given three options on how they want their modules to be distributed and accomplished. It also suggests that further study on self-learning module preferences may be done on a wider scale, including assessment revision and a link between module preferences and student learning outcomes and dropout intentions.



References:

  1. Chrzan, K., & Orme, B. (2000). An overview and    comparison    of    design strategies of choice-based conjoint analysis.      Sawtoothe   Software,   Inc. https://content.sawtoothsoftware.Hcom/assets/e4d3494a-26e5-4a4c-a3f5-93685278909d 
  2. De Witte, K., Cabus, S., Thyssen, G., Groot, W., & van den Brink, H. M. (2013). A critical  review  of  the  literature  on H school  dropout.  Educational  Research Review,   13-28.   https://www.research-gate.net/publication/262637429_A_Critical_Review_of_the_Literature_on_School_Dropout
  3. Department of Education. (2016). The learning action cell as a k to 12 basic education program school-based continuing professional development strategy for the improvement of teaching and learning. https://www.deped.gov.ph/2016/06/07/do-35-s-2016-the-learning-action-cell-as-a-k-to-12-basic-education-program-school- based-continuing-professional-devel- opment-strategy-for-the-improvement- of-teaching-and-learning/
  4. Department of Education. (2020). Interim guidelines for assessment and grading in  light  of  the  baic  education learning continuity plan. https://deped.gov.ph/2020/10/02/october-2-2020-do-031-s-2020-interim-guidelines-for-as-sessment-and-grading-in-light-of-the-basic-education-learning-continuity-plan/
  5. Department of Education. (2020). Policy guidelines  for  the  provision  of learning resources in the implementation of the basic education learning continuity plan. https://www.deped.gov.ph/2020/07/20/july-20-2020-do-018-s-2020-policy-guidelines-for-the-provision-of-learning-resources-in-the-implementation-of-the-basic-ed-ucation-continuity-plan/
  6. Farooq, M., Chaudhry, A., Shafiq, M., & Berhanu, G. (2011). factors affecting students’ quality of academic performance:           a           case           of secondary school level. Journal of Quality  and  Technology  Management, 7(2), 1-14. https://www.researchgate.net/publication/284150574_Factors_af-fecting_students’_quality_of_academ-ic_performance_A_case_of_second-ary_school_level
  7. Harpman, D. A. (2008). Introduction to conjoint  analysis  for  valuing ecosystem amenities. https://www.usbr.gov/tsc/techreferences/economics/conjoint/TMEC200803.pdf
  8. Huertas-García,  R.,  Nuñez-Carballosab,  A., &   Miravitlles,   P.   (2015).   Statisticaland cognitive optimization of experimental designs in conjoint analysis. European Journal of Management, 142-149. https://www.sciencedirect.com/science/article/pii/LS1019683815000542
  9. Jaeger, S., Mielby, L., Heymann, H., Yilin, J., & Frost, M. (2013). Analyzing conjoint data with OLS and PLS regression: AL casestudywithwine.Journalofthe scienceoffoodandagriculture,93. https://doi.org/10.1002/jsfa.6194
  10. Kaur,   R.,   Singh,   G.,   &   Singh,   S.   (2017). Effect      of      self-learning      modules
  11. Khalil, M. K., Nelson, L. D., & Kibble, J. D. (2010). The use of self-learning modules
  12. Kosasih,  W.,  Salomon,  L.  L.,  &  Hutomo,  R. (2017).   Using   conjoint   and   cluster
  13. Kuzmanovic, M., Radosavljevic, M., & Vujosevic, M. (2013). Understanding student  preferences  for  postpaid mobile services. Acta Polytechnica Hungarica,    10(1),    159-175.    https://www.researchgate.net/publica-tion/260515194_Understanding_Stu-dent_Preferences_for_Postpaid_Mo-bile_Services_using_Conjoint_Analysis
  14. Lancaster, K. J. (April). A new approach to consumer       theory.       journal       of political economy, 74, 132. https://www. semanticscholar.org/paper/A-New-Ap- proac h-to - Consu mer-T heor y-La n- cas ter/ 78915d b8c bb8ee3b24 f43d-168438fe79edc7bb2b
  15. Llego, M. A. (2020). DepEd learning delivery modalities    for    school    year    2020 2021. https://www.teacherph.com/deped-learning-delivery-modalities/
  16. Luce, R., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental    measurement.    Journal of Mathematical Psychology, 1(1), 1-27. https://www.imbs.uci.edu/files/per-sonnel/luce/pre1990/1964/LuceTukey_JMP_1964.pdf
  17. Maginnis, K., & Campbell, D. (2016). Students’ preference for attributes of postgraduate economics modules: evidence           from           a           multi- profile best-worst scaling survey. International Review of Economics Education, 18-27. from https://www.sci-encedirect.com/science/article/abs/pii/S1477388016300329
  18. Malik, S. K. (2012). Effects of modular and traditional approaches on students’ general         comprehension.         Elixir social studies, 42, 6228-6231. https:// www.semanticscholar.org/paper/Ef-fects-of-modular-and-traditional-ap-proaches-on-Malik/a5b5190784d2c-6285174606fac0f31bde0295a92
  19. Matanluk, O., Mohammad, B., Kiflee, D. N., & Imbug, M. (2013). The effectiveness of using teaching module based on radical constructivism       toward       students’ learning process. Procedia - Social and Behavioral Sciences, 90, 607-615. https://doi.org/10.1016/j.sbspro.2013.07.132
  20. Mazrekaj,  D.,  &  De  Witte,  K.  (2019).  The effect of modular education on school dropout. British Educational Research Journal, 1-30. https://doi.org/10.1002/ berj.3569
  21. mobile   services.   Acta   Polytechnica Hungarica,    10(1),    159-175.    https://www.researchgate.net/publica-tion/260515194_Understanding_Stu-dent_Preferences_for_Postpaid_Mo-bile_Services_using_Conjoint_Analysisster , K. J. (April). A new approach to consumer       theory.       journal       of political economy, 74, 132. https://www.
  22. Meginnis,    K.,    &    Campbell,    D.    (2017). Students’   preferences   for   attributes
  23. Merlo,   A.,   &   Wolpin,   K.   I.   (2015).   The transition from school to jail: youth crime and high school completion among black males. European economic review, 79, 2Mushtaq, I., & Khan, S. N. (June). Factors affecting students’ academic performance.Global Jour- nal of Management and Business Research, 12(9), 16-22. https://ejour-nal.upi.edu/index.php/IJERT/article/download/41394/17504#:~:text=-Students’%20academic%20perfor-mance%20is%20affected,’%20qual-ity%2C%20and%20learning%20infrastructure34-251.https://www.sciencedirect.com/science/article/pii/S0014292115001130
  24. Natoli,  C.  (2018).  Classical  designs: fractional factorial designs. air force institute of technology, STAT Center of Excellence, https://www.afit.edu/STAT/passthru.cfm?statfile=70#:~:text=A%20fractional%20factorial%20design%20is%20a%20reduced%20version%20of%20the,with%20a%20tradeoff%20in%20information.
  25. Nyoni,   M.,   Nyoni,   T.,   &   Bonga,   W.   G. (2017). Factors affecting students’ academic   achievement   in zimbabwe’s  rural  secondary  schools: a case study of marimasimbe secondary school in jiri community. Dynamic Research Journals’ Journal of Economics and Finance (DRJ-JEF), 2(3),1-15. https://www.researchgate.net/publication/315767454_Factors_Af-fecting_Students’_Academic_Achieve-ment_in_Zimbabwe’s_Rural_Second-ary_Schools_A_Case_Study_of_Mari-masimbe_Secondary_School_in_Jiri_Community
  26. Oreopoulos,  P.,  &  Salvanes,  K.  G.  (2011). Priceless: the nonpecuniary benefits    of    schooling.    Journal    of Economic    Perspectives,    25(1), 159-Se 184. https://www.aeaweb.org/arti-cles?id=10.1257/jep.25.1.159
  27. Oyatoye, E. O., Otike-Obaro, A. E., & Nkeiruka, E. G. (2016). Using conjoint analysis to study the factors important to university students in nigeria when they select a laptop computer. 1-15. https://www.westga.edu/~bquest/2016/ laptops2016.pdf
  28. Poortinga, W., Steg, L., Vlek, C., & Wiersma, G.  (2001). Household  preferences  for energy-saving      measures:      a conjoint analysis. Journal of Economic Psychology, 24(1), 49-64. https://doi.org/10.1016/S0167-4870(02)00154-X
  29. Press, C. U. (n.d.). Booklet. (C. dictionary, Editor)     https://dictionary.cambridge.
  30.  
  31. Prieto, N. G., Naval, V. C., & Carey, T. G. (2017). Selecting Relevant Literature. Practical Research 1 (pp. 83-86). Quezon City: Lorimar Publishing, Inc.
  32. Priya, P. (2015). Effectiveness of self-learning modules on achievement in biology among secondary school students. International Journal of Education and Psychological Research (IJEPR), 4(2). https://ijepr.org/download.php?id=179
  33. Rahmawati, R., Lestari, F., & Umam, R. (2019). Analysis    of    the    effectiveness    of learning    in    the    use    of    learning modules. Desimal: Jurnal Matematika, 2(3), 233-240. Retrieved November 20, 2020. http://dx.doi.org/10.24042/djm. v2i3.4557
  34. Rao, V. R. (2014). Applied conjoint analysis. Springer Heidelber  New  York Dordrecht London. http://dx.doi.org/10.24042/djm.v2i3.4557
  35. Rosenberg, M., Pettifor, A., Miller, W. C., Thirumurthy,    H.,    Emch,    M., Afolabi, S. A., Tollman, S. (2015). Relationship between school dropout and teen pregnancy among rural south african young women. International Journal of Epidemiology, 44(3), 928–936. https://doi.org/10.1093/ije/dyv007
  36. Sadeghi, M. (2018). A shift from classroom to     distance     learning:     advantages and disadvantages. International Journal of Research in English Education (IJREE), 80-88. doi:10.29252/ijree.4.1.80
  37. Sejpal, K. (2013). Modular Method of Teaching. International Journal for Research, 2(2), 169-171. https://rai- jmronlineresearch.files.wordpress. com/2017/07/29_169-171-dr-kandarp- sejpal.pdf
  38. Shan, L. C., De Brún, A., Henchion, M., Li, C., Murrin, C., Wall, P. G., & Monahan, F. J. (2017). Consumer evaluations of processed   meat   products reformulated to be healthier – A conjoint analysis study. Meat Science, 131,   82-89.   http://dx.doi.org/10.1016/j. meatsci.2017.04.239
  39. Singh,  S.  P.,  Malik,  S.,  &  Singh,  P.  (2016). Factors           Affecting           Academic Performance     of     Students.     Indian Journal  of  Research,  5(4).  https://files.eric.ed.gov/fulltext/EJ1300829.pdf
  40. Sohn, S. Y. (2010). Conjoint analysis for recruiting high-quality students for college education. Expert Systems with Applications, 3777–3783. http://dx.doi. org/10.1016/j.eswa.2009.11.043
  41. Tas, A., Selvitopu, A., Bora, V., & Demirkaya, Y. (2013). Reasons for dropout for vocational high school students. Educational Sciences: Theory and Practice, 1561-1565. https://www.re-searchgate.net/publication/297826221_Reasons_for_Dropout_for_Vocational_High_School_Students
  42. Thobejane,  T.  D.  (2016).  Factors contributing   to   teenage   pregnancy in  south  africa:  the  case  of matjitjileng  village.  Journal  of Sociology and Social Anthropology, 6(2),273-277. https://www.researchgate.net/publication/320956828_Factors_contributing_to_teenage_pregnancy_in_South_Africa
  43. Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273–286.    https://brocku.ca/MeadProj-ect/Thurstone/Thurstone_1927f.html
  44. Uyangor,  N.,  Sahan,  H.  H.,  &  Tanriverdi, M. (2013). Teachers’ perceptions towards modules used in vocational and technical education. Social and Behavioral Sciences, 2522-2531. http://dx.doi.org/10.1016/j.sbspro.2013.12.290
  45. Vidal  Rodeiro,  C.  L.,  &  Nadas,  R.  (2012).Effects   of   modularity,   certification session   and   re-sits   on   examination performance.           Assessment           in Education:      Principles,      Policy      & Practice, 19, 411–430. https://dx.doi.org/10.1080/0969594X.2011.614218
  46. Vlasenko,     L.,     &     Bozhok,     N.     (2014). Advantages    and    Disadvantages    of Distance  Learning.  http://dspace.nuft.edu.ua/bitstream/123456789/20684/1/1.pdf