Acanthamoeba spp. Found in Freshwater Fishes From Selected Areas of the Philippines - A Preliminary Report
Giovanni Milanez | Frederick Ramirez Masangkay | Mary Rose Lirio | Eleni Golomazou | Bernardino Hagosojos | Panagiotis Karanis
Discipline: molecular biology, biophysics and biochemistry
Abstract:
Acanthamoeba spp. are ubiquitous organisms that have been adapted to different
types of habitats and conditions. The study of freshwater fishes has become the
interest of many researchers for their ability to harbor parasitic organisms, and
they also play a significant role as intermediate hosts in the transmission cycle
to humans. This study examines the Acanthamoebae spp. present in a variety of
edible freshwater fish in the Philippines. A total of 14 different fish species (six
fish per species) were collected from major lakes all over the Philippines. Fish
intestines were aseptically dissected, pooled, processed, and cultured in nonnutrient agar lawned with Escherichia coli. Culture plates were examined for 14
days to determine their response to amoebal growth. Thirty-one percent of the
fish species sampled were found to be positive for amoebic growth. Genomic
DNAs were extracted and examined by polymerase chain reaction (PCR) using
Acanthamoeba-specific primers. Further sequencing of PCR amplicons confirmed
the presence of four Acanthamoeba species (A. mauritanensis, A. polyphaga, A.
castellanii, and A. lenticulata) from the culture-positive samples. This study shows
the presence of Acanthamoeba spp. from edible freshwater fishes in the Philippines.
The presence of potentially pathogenic free-living amoebae like Acanthamoeba
in edible freshwater fish may pose a public health risk. Although the effects of
direct consumption of Acanthamoeba-infected fish are yet to be established, the
potential of other means of infection, as discussed previously, needs to be taken
into serious perspective.
References:
- Adams, A. M., Murrell, K. D., & Cross, J. H. (1997). Parasites of fish and risks to public health. Revue Scientifique et Technique, 16(2), 652–660. https://doi.org/10.20506/rst.16.2.1059
- Anand, C., Skinner, A., Malic, A., & Kurtz, J. (1983). Interaction of Legionella pneumophila and a free living amoeba (Acanthamoeba palestinensis). Epidemiology & Infection, 91(2), 167–178. https://doi.org/10.1017/s0022172400060174
- Barete, S., Combes, A., De Jonckheere, J., Datry, A., Varnous, S., Martinez, V., Ptacek, S. G., Caumes, E., Capron, F., Francès, C., Gibert, C., & Chosidow, O. (2007). Fatal disseminated Acanthamoeba lenticulata acanthamebiasis in a heart transplant patient. Emerging Infectious Diseases, 13(5), 736–738. https://doi.org/10.3201/eid1305.061347
- Booton, G. C., Kelly, D. J., Chu, Y. W., Seal, D. V., Houang, E., Lam, D. S. C., Byers, T. J., & Fuerst, P. A. (2002). 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. Journal of Clinical Microbiology, 40(5), 1621–1625. https://doi.org/10.1128/JCM.40.5.1621-1625.2002
- Booton, G. C., Visvesvara, G. S., Byers, T. J., Kelly, D. J., & Fuerst, P. A. (2005). Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. Journal of Clinical Microbiology, 43(4), 1689–1693. https://doi.org/10.1128/JCM.43.4.1689-1693.2005
- Belizario, V., Totanes, F. I., De Leon, W., Migrino, J., & Macasaet, L. (2010). Intestinal capillariasis, Western Mindanao, the Philippines. Emerging Infectious Diseases, 16(4), 736–737. https://doi.org/10.3201/eid1604.080483
- Booton, G., Rogerson, A., Bonilla, T., Seal, D., Kelly, D., Beattie, T., Tomlinson, A., Lares-Villa, F., Fuerst, P. A., & Byers, T. J. (2004). Molecular and physiological evaluation of subtropical environmental isolates of Acanthmaoeba spp., causal agent of Acanthamoeba keratitis. Journal of Eukaryotic Microbiology, 51(2), 192–200. https://doi.org/10.1111/j.1550-7408.2004.tb00545.x
- Chovanec, A., Hofer, R., & Schiemer, F. (2003). Fish as bioindicators. In B. A. Markert, A. M. Breure, & H. G. Zechmeister (Eds.), Bioindicators and biomonitors (Vol. 6, pp. 639–676). https://doi.org/10.1016/S0927-5215(03)80148-0
- Coronado-Velázquez, D., Silva-Olivares, A., Castro-Muñozledo, F., Lares-Jiménez, L. F., Rodríguez-Anaya, L. Z., Shibayama, M., & Serrano-Luna, J. (2020). Acanthamoeba mauritaniensis genotype T4D: An environmental isolate displays pathogenic behavior. Parasitology International, 74, Article 102002. https://doi.org/10.1016/j.parint.2019.102002
- Cross, J. (1992). Intestinal capillariasis. Clinical Microbiology Reviews, 5, 120-129. DOI: 10.1128/cmr.5.2.120
- De Jonckheere, J. F. (1979). Occurrence of Naegleria and Acanthamoeba in aquaria. Applied and Environmental Microbiology, 38(4), 590–593. https://doi.org/10.1128/aem.38.4.590-593.1979
- Dykova, I., Machackova, B., & Peckova, H. (1997). Amoebae isolated from organs of farmed tilapias, Oreochromis niloticus. Folia Parasitologica, 44(2), 81–90.
- Environmental Protection Agency 2011. Water Treatment Manual: Disinfection. Environmental Protection Agency 8-9.
- Franke, E. D., & Mackiewicz, J. S. (1982). Isolation of Acanthamoeba and Naegleria from intestinal content of freshwater fishes and their potential pathogenicity. The Journal of Parasitology, 68, 164–166.
- Gast, R.J., Ledee, D.R., Fuerst, P.A., & Byers, T.J. (1996). Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. Journal of Eukaryotic Microbiology, 43(6), 498-504. DOI:10.1111/j.1550-7408.1996.tb04510.x
- JE, R. (1998). [Herman Diedrich Sporing (1701-1747), Professor der Medizin in Turku (1728-1747)]. Hippokrates, 15, 19-43.
- Juárez, M. M., Tártara, L. I., Cid, A. G., Real, J. P., Bermúdez, J. M., Rajal, V. B., & Palma, S. D. (2018). Acanthamoeba in the eye, can the parasite hide even more? Latest developments on the disease. Contact Lens & Anterior Eye: The Journal of the British Contact Lens Association, 41(3), 245–251. https://doi.org/10.1016/j.clae.2017.12.017
- Khan, N. (2006). Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiology Reviews, 30(4), 564–595. https://doi.org/10.1111/j.1574-6976.2006.00023.x
- Kumar, S., Stecher, G., & Tamura, K. (2016). Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
- Laoprasert, T., Nualchan, T., Chinabut, S., & Hatai, K. (2009). Amoebae isolated from fish and rearing water at Oscar asronatus ocellatus farm. Aquaculture Science, 57(2), 265–270. https://doi.org/10.11233/aquaculturesci.57.265
- Ledee, D. R., Iovieno, A., Miller, D., Mandal, N., Diaz, M., Fell, J., Fini, M. E., & Alfonso, E.C. (2009). Molecular identification of T4 and T5 genotypes in Acanthamoeba keratitis patients. Journal of Clinical Microbiology, 47(5), 1458–1462. https://doi.org/10.1128/JCM.02365-08
- Magnet, A., Galvan, A. L., Fenoy, S., Izquierdo, F., Rueda, C., Fernandez Vadillo, C., Pérez-Irezábal, J., BAndyopadhyay, K., Visvesvara, G. S., da Silva, A. J., & del Aquila, C. (2012). Molecular characterization of Acanthamoeba isolated in water treatment plants and comparison with clinical isolates. Parasitology Research, 111(1), 383–392. https://doi.org/10.1007/s00436-012-2849-2
- Marciano-Cabral, F., & Cabral, G. (2003). Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews, 16(2), 273–307. https://doi.org/10.1128/CMR.16.2.273-307.2003
- Milanez, G., Masangkay, F., Thomas, R., Ordona, M. O., Bernales, G., Corpuz, V. C. M., Fortes, H. S. V., Garcia, C. M. S., Nicolas, L. C., & Nissapatorn, V. (2017). Molecular identification of Vermamoeba vermiformis from freshwater fish in Lake Taal. Experimental Parasitology, 183, 202–206. https://doi.org/10.1016/j.exppara.2017.09.009
- Page, F. (1967). Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. The Journal of Protozoology, 14(3), 499–521. https://doi.org/10.1111/j.1550-7408.1967.tb02036.x
- Prashanth, K., Pasricha, G., & Sharma, S. (2011). Fluorescence amplified fragment length polymorphism for subtyping of genotypes of Acanthamoeba isolated from patients with keratitis. The Indian Journal of Medical Research, 133(1), 83–87.
- Qvarnstrom, Y., Visvesvara, G. S., Sriram, R., & da Silva, A. J. (2006). Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. Journal of Clinical Microbiology, 44(10), 3589–3595. https://doi.org/10.1128/JCM.00875-06
- Rivera, W. L., & Adao, D. E. V. (2008). Identification of the 18S-ribosomal- DNA genotypes of Acanthamoeba isolates from the Philippines. Annals of Tropical Medicine and Parasitology, 102(8), 671–677. https://doi.org/10.1179/136485908X337544
- Rivera, W. L., & Adao, D. E. V. (2009). 18S ribosomal DNA genotypes of Acanthamoeba species isolated from contact lens cases in the Philippines. Parasitology Research, 105(4), 1119–1124. https://doi.org/10.1007/s00436-009-1531-9
- Schuster, F. L., Glaser, C., Honarmand, S., Maquire, J. H., & Visvesvara, G. S. (2004). Balamuthia amebic encephalitis risk among Hispanic Americans. Emerging Infectious Diseases, 10(8), 1510–1512. https://doi.org/10.3201/eid1008.040139
- Schuster, F. L., & Visvesvara, G. S. (2004). Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International Journal for Parasitology, 34(9), 1001–1027. https://doi.org/10.1016/j.ijpara.2004.06.004
- Shamsi, S., & Suthar, J. (2016). A revised method of examining fish for infection with zoonotic nematode larvae. International Journal of Food Microbiology, 227, 13–16. https://doi.org/10.1016/j. ijfoodmicro.2016.03.023
- Shamsi, S. (2019). Seafood-borne parasitic diseases: A “one-health” approach is needed. Fishes, 4, Article 9. https://doi.org/10.3390/fishes4010009
- Shamsi, S., & Sheorey, H. (2018). Seafoodâborne parasitic diseases in Australia: Are they rare or underdiagnosed? Internal Medicine Journal, 48(5), 591–596. https://doi.org/10.1111/imj.13786
- Shinn, A. P., Pratoomyot, J., Bron, J. E., Paladini, G., & Brooker, E. E. (2015). Economic costs of protistan and metazoan parasites to global mariculture. Parasitology, 142(1), 196–270. https://doi.org/10.1017/S0031182014001437
- Sitjà-Bobadilla, A., & Oidtmann, B. (2017). Integrated pathogen management strategies in fish farming. Fish Diseases: Prevention and Control Strategies, 119–44. https://doi.org/10.1016/B978-0-12-804564-0.00005-3
- Stothard, D.R., Schroeder-Diedrich, J.M., Awwad, M.H., Gast, R.J., Ledee, D.R., Rodriguez-Zaragosa, S.,…Byers, T.J. (1998). The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. The Journal of Eukaryotic Microbiology, 45(1), 45-54. DOI: 10.1111/j.1550-7408.1998.tb05068.x.
- Taylor, P. (1977). Isolation and experimental infection of free-living amebae in freshwater fishes. The Journal of Parasitology, 63(2), 232–237. https://doi.org/10.2307/3280047
- Trabelsi, H., Sellami, A., Dendena, F., Sellami, H., Cheikh-Rouhou, F., Makni, F., Dhiaa, S. B., & Ayadi, A. (2010). Free-living amoebae (FLA): Morphological and molecular identification of Acanthamoeba in dental unit water. Parasite, 17(1), 67–70. https://doi.org/10.1051/parasite/2010171067.
- Visvesvara, G. S., Moura, H., & Schuster, F. L. (2007). Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology and Medical Microbiology, 50(1), 1–26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
ISSN 2980-4728 (Online)
ISSN 0117-3294 (Print)