HomeDMMMSU Research and Extension Journalvol. 8 no. 1 (2024)

Characterization of the Biosynthesized Silver Nanoparticles from the Sea Cucumber Bohadschia marmorata (Jaeger, 1833)

Wilson L Laranang | Paulina A Bawingan

Discipline: molecular biology, biophysics and biochemistry

 

Abstract:

Silver nanoparticles (AgNPs) from marine invertebrates, particularly sea cucumbers, are relatively few or even lacking. This study aimed to determine the potential of the body wall of Bohadschia marmorata as reducing agent to synthesize silver nanoparticles and characterize the generated AgNPs using a direct and environment-friendly procedure. Although limited, the generated AgNPs were confirmed with an absorbance peak of 416 nm, indicative of surface plasmon resonance, with strong signals of elemental silver acquired by EDS at 3 keV. The potential functional groups responsible for the reduction of silver ions and capping of the nanoparticles include O–H (alcohol and carboxylic acids), C–C (alkene), N–H, and C–N (amine) groups detected by FT-IR. Scanning electron microscopy showed a nearly spherical morphology with an approximate size of 288 nm which tends to polydisperse and aggregate. Thus, this study showed that the sea cucumber body wall can be used in the biosynthesis of AgNPs. However, refinement of the procedures and operational parameters used is needed to produce more and better-quality nanoparticles.



References:

  1. Aatab F, Bellali F, Aboudamia FZ, Errhif A, and Kharroubi M. 2023. Phenolic compounds and in vitro antioxidant activity of spray-dried and freeze-dried aqueous extracts of sea cucumber (Holothuria tubulosa). Journal of Applied Biology and Biotechnology 11: 158-167.
  2. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, and Alkhulaifi MM. 2019. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi Journal of Biological Sciences 26(6): 1207-1215.
  3. Al-Soub A, Khleifat K, Al-Tarawneh A, Al-Limoun M, Alfarrayeh I, Sarayreh AA, Qaisi YA, Qaralleh H, Alqaraleh M, and Albashaireh A. 2022. Silver nanoparticles biosynthesis using an airborne fungal isolate, Aspergillus flavus: optimization, characterization and antibacterial activity. Iranian Journal of Microbiology 14(4): 518–528. https://doi.org/10.18502/ijm.v14i4.10238
  4. Andas J, and Idris NN. 2021, February. Green synthesis of mesoporous carbon from kapok. AIP Conference Proceedings 2332(1).
  5. Arunachalam KD, Arun LB, Annamalai SK, and Arunachalam AM. 2015. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. International Journal of Nanomedicine: 31-41.
  6. Asmathunisha N, and Kathiresan K. 2013. A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B: Biointerfaces 103: 283-287.
  7. Azizi S, Namvar F, Mahdavi M, Ahmad MB, and Mohamad R. 2013. Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials 6(12): 5942-5950.
  8. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, and Misra A. 2009. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects 348(1-3): 212-216.
  9. Bawazeer S, Rauf A, Shah S, Shawky A, Al-Awthan Y, Bahattab O, Uddin G, Sabir J and El-Esawi M. 2021. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies. Green Processing and Synthesis 10(1): 85-94.
  10. Bhuyar P, Rahim MH A, Sundararaju S, Ramaraj R, Maniam GP, and Govindan N. 2020. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences 9(1): 1-15.
  11. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, and Vega Baudrit JR. 2017. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in chemistry 5: 6.
  12. Columbano IV, Chaudary SM, Durana CEI, Empaynado ALE, Fadriquelan SQR, FeudoACF, Fule JG, Kamerkar MC, Kanani PJ, Kaur P, Lamug BGA,  Columbano IV, and Lastimosa JN. 2021. Biogenic Synthesis of Silver Nanoparticles using         Philippine Lime (Citrofortunella microcarpa) Peel Extract and its Antibacterial Activity in Comparison to Ciprofloxacin against Escherichia coli. Philippine Scientific Journal 54(2): 1-1.
  13. Dada AO, Inyinbor AA, Idu EI, Bello OM, Oluyori AP, Adelani-Akande TA, Okunola AA and Dada O. 2018. Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. PeerJ 6: e5865.
  14. Dhaka A, Mali SC, Sharma S, and Trivedi R. 2023. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 101108.
  15. de Aragao AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araujo MC, Santiago JDAS, Cardoso VS, Quaresma P, de Almeida JRdS and da Silva DA. 2019. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry 12(8): 4182-4188.
  16. de Matos RA, and Courrol LC. 2017. Biocompatible silver nanoparticles prepared with amino acids and a green method. Amino acids, 49, 379-388.
  17. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, and Rai M. 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Journal of pharmaceutical sciences 103(7): 1931-1944.
  18. Fabregas AJE, Bercilla DJPS, De Guzman JC, Diaz DC, Dinglasan RE, Sandoval SS, Dumaoal OSR, and Fajarillo DKF. 2021. Antimicrobial property of bio-reduced silver nanoparticle prepared using aqueous fruit extract of Antidesma bunius L. Spreng against Methicillin-resistant and susceptible Staphylococcus aureus. Asia Pacific Journal of Allied Health Sciences 4(1).
  19. FTIR Functional Group Database Table with Search – InstaNANO. 2024. Accessed at  https://instanano.com/all/characterization/ftir/ftir-functional-group-search/.
  20. Guan Z, Ying S, Ofoegbu PC, Clubb P, Rico C, He F, and Hong J. 2022. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology and Innovation 26: 102336.
  21. Hamed MR, and Moradi MHGAM. 2015. Biosynthesis of Silver Nanoparticles Using Marine Sponge. Oriental Journal of Chemistry 31(4): 1961.
  22. Hamida RS, Abdelmeguid NE, Ali MA, Bin-Meferij MM, and Khalil MI. 2020. Synthesis of silver nanoparticles using a novel cyanobacteria Desertifilum sp. extract: their antibacterial and cytotoxicity effects. International journal of nanomedicine: 49-63.
  23. Hamouda RA, Hussein MH, Abo-Elmagd RA, and Bawazir SS. 2019. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific reports 9(1): 13071.
  24. Hashemi S, Givianrad MH, Moradi AM, and Larijani K. 2015. Biosynthesis of silver nanoparticles using brown marine seaweed Padina boeregeseni and evaluation of physico-chemical factors.
  25. Hossain A, Dave D, and Shahidi F. 2020. Northern sea cucumber (Cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector. Marine Drugs 18(5): 274.
  26. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q. 2015. Bio-inspired synthesis of metal nanomaterials and applications. Chemical Society Reviews 44: 6330–6374.
  27. Hussain NS, Harun NA, Radzi MNFM, Idris I, and Ismail WIW. 2018. Biosynthesis of silver nanoparticles from marine polychaete diopatra claparedii grube, 1878. Jurnal Teknologi, 80(6).
  28. Husseiny SM, Salah TA, and Anter HA. 2015. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of Basic and Applied Sciences 4(3): 225-231.
  29. Jalab J, Abdelwahed W, Kitaz A, and Al-Kayali R. 2021. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon: 7(9).
  30. Jeong GJ, Khan S, Tabassum N, Khan F, and Kim YM. 2022. Marine-bioinspired nanoparticles as potential drugs for multiple biological roles. Marine Drugs 20(8): 527.
  31. Jontila JBS. 2023. The Sea Cucumbers of Palawan, Philippines: A Field Guide. Dolorosa RG (Ed). Western Philippines University.
  32. Jyoti K, Baunthiyal M, and Singh A. 2016. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences 9(3): 217-227.
  33. Khalil MA, El-Shanshoury AERR, Alghamdi MA, Alsalmi FA, Mohamed SF, Sun J, and Ali SS. 2021. Biosynthesis of Silver Nanoparticles by Marine Actinobacterium Nocardiopsis dassonvillei and Exploring Their Therapeutic Potentials. Frontiers in Microbiology, 12.
  34. Kim SW, Kerr AM, and Paulay G. 2013. Colour, confusion, and crossing: resolution of species problems in Bohadschia (Echinodermata: Holothuroidea). Zoological Journal of the Linnean Society 168(1): 81-97.
  35. Legaspi DS, and Fundador NGV. 2020. Green Synthesis of Silver Nanoparticles Using Calabash (Crescentia cujete) Fruit Extract and Their Antimicrobial Properties. Philippine Journal of Science 149(1): 239-246.
  36. Majeed S, Danish M, Zahrudin AHB, and Dash GK. 2018. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala International Journal of Modern Science 4(1): 86-92.
  37. Mahendran G, and Kumari BR. 2016. Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts. Food Science and Human Wellness 5(4): 207-218.
  38. Malik M, Iqbal MA, Malik M, Raza MA, Shahid W, Choi JR, and Pham PV. 2022. Biosynthesis and characterizations of silver nanoparticles from Annona squamosa leaf and fruit extracts for size-dependent biomedical applications. Nanomaterials 12(4): 616.
  39. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, and Franklin G. 2018. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6): 940.
  40. Muniyan A, Ravi K, Mohan U, and Panchamoorthy R. 2017. Characterization and in vitro antibacterial activity of saponin-conjugated silver nanoparticles against bacteria that cause burn wound infection. World Journal of Microbiology and Biotechnology 33: 1-12.
  41. Muthukrishnan S, Bhakya S, Kumar TS, and Rao MV. 2015. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–An endemic species. Industrial Crops and Products 63: 119-124.
  42. Muzamil M, Khalid N, Aziz MD, and Abbas SA. 2014, June. Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Conference Series: Materials Science and Engineering 60(1): 012034.
  43. Natsuki J, Natsuki T, and Hashimoto Y. 2015. A review of silver nanoparticles: synthesis methods, properties and applications. International Journal of Materials Science and Applications 4(5): 325-332.
  44. Ninganagouda S, Rathod V, and Singh D. 2014. Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. International Letters of Natural Sciences 10.
  45. Nguyen DH, Vo TNN, Le NTT, Thi DPN, and Thi TTH. 2020. Evaluation of saponin-rich/poor leaf extract-mediated silver nanoparticles and their antifungal capacity. Green Processing and Synthesis 9(1): 429-439.
  46. Ohiduzzaman M, Khan MNI, Khan KA, and Paul B. 2024. Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation. Heliyon 10(3): e25520.
  47. Olavides RDD, Edullantes CMA, and Menez MAJ. 2010. Assessment of the sea cucumber resource and fishery in the Bolinao-Anda reef system. Science Diliman 22(2): 1-12.
  48. Osorio-Echavarría J, Osorio-Echavarría J, Ossa-Orozco CP, and Gómez-Vanegas NA. 2021. Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: Influence of silver nitrate concentration and fungus growth time. Scientific Reports 11(1): 1-14.
  49. Parlinska-Wojtan M, Kus-Liskiewicz M, Depciuch J, Sadik O. 2016. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using chamomile terpenoids as a combined reducing and capping agent. Bioprocess. Biosystems Engineering. 39: 1213–1223.
  50. Roldán MV, Pellegri NS, and De Sanctis OA. 2012. Optical response of silver nanoparticles stabilized by amines to LSPR based sensors. Procedia Materials Science 1: 594-600.
  51. Rosman NSR, Harun NA, Idris I, and Ismail WIW. 2020. Eco-friendly silver nanoparticles (AgNPs) fabricated by green synthesis using the crude extract of marine polychaete, Marphysa moribidii: biosynthesis, characterisation, and antibacterial applications. Heliyon 6(11): e05462.
  52. Sari PA. 2020. Determination of nano-collagen quality from sea cucumber holothurian scabra. IOP Conference Series: Earth and Environmental Science 430(1): 012005.
  53. Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, and Bonanno E. 2018. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry 62(1): 2841.
  54. Segneanu AE, Gozescu I, Dabici A, Sfirloaga P, and Szabadai Z. 2012. Organic compounds FT-IR spectroscopy(Vol. 145). Rijeka, Croatia: InTech.
  55. Sellem F, Brahmi Z, Mnasser H, Rafrafi S, and Bouhaouala-Zahar B. 2017. Antimicrobial activities of coelomic fluid and body wall extracts of the edible Mediterranean sea cucumber Holothuria tubulosa Gmelin, 1790. Cahiers de Biologie Marine 58(2): 181-188.
  56. Shankar SS, Rai A, Ahmad A, Sastry M. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 275: 496–502.
  57. Singh R, Sahu SK, and Thangaraj M. 2014. Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens. Journal of Nanoparticles 2014(1): 718240.
  58. Singh PK, Singh J, Medhi T, and Kumar A. 2022. Phytochemical screening, quantification, FT-IR analysis, and in silico characterization of potential bio-active compounds identified in HR-LC/MS analysis of the polyherbal formulation from Northeast India. ACS Omega 7(37): 33067-33078.
  59. Soufi GJ, Hekmatnia A, Nasrollahzadeh M, Shafiei N, Sajjadi M, Iravani P, Fallah S, Irvani S and Varma RS. 2020. SARS-CoV-2 (COVID-19): new discoveries and current challenges. Applied Sciences 10(10): 3641.
  60. Thirumurugan A, Tomy NA, Ganesh RJ, and Gobikrishnan S. 2010. Biological reduction of silver nanoparticles using plant leaf extracts and its effect on increased antimicrobial activity against clinically isolated organism. Der Pharma Chemica 2(6): 279-284.
  61. Thiruvengada V, and Bansod AV. 2021. Green synthesis of silver nanoparticles using melia azedarach and its characterization, corrosion and antibacterial properties. Biointerface Research in Applied Chemistry 11: 8577-8586.
  62. Vivek M, Kumar PS, Steffi S, and Sudha S. 2011. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology 3(3): 143.
  63. Yu C, Tang J, Liu X, Ren X, Zhen M, and Wang L. 2019. Green biosynthesis of silver nanoparticles using Eriobotrya japonica (Thunb.) leaf extract for reductive catalysis. Materials 12(1): 189.
  64. Yurtluk T, Akçay FA, and Avcı A. 2018. Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8. Preparative Biochemistry and Biotechnology 48(2): 151-159.
  65. Zhang Z, Li S, Gu X, Li J, and Lin X. 2019. Biosynthesis, characterization and antibacterial activity of silver nanoparticles by the Arctic anti-oxidative bacterium Paracoccus sp. Arc7-R13. Artificial Cells, Nanomedicine, and Biotechnology 47(1): 1488-1495.
  66. Zhao YC, Xue CH, Zhang TT, and Wang YM. 2018. Saponins from sea cucumber and their biological activities. Journal of Agricultural and Food Chemistry 66(28): 7222-7237.
  67. Zia M, Gul S, Akhtar J, Haq IU, Abbasi BH, Hussain A, Naz S, and Chaudhary MF. 2017. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET nanobiotechnology 11(2): 193-199.