HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 5 no. 6 (2024)

Influence of Bio-Stimulant to Rooting and Biomass of Sugarcane Setts at Pre-Tillering Stage

Paulino A. Oñal, Jr. | Jeff Gregorr A. Garcia | Amie E. Dela Cruz | Jewel V. Pitallar

 

Abstract:

Sugarcane is an important crop in the Philippines planted throughout the country but is most abundant in the Visayas and particularly on Negros Island. This study aims to determine the effect of the application of different concentrations of bio-stimulant on enhancing root and biomass accumulations at the pre-tillering stage of the sugarcane plant. The study was conducted at the University of Negros Occidental – Recoletos School of Agriculture, Philippines last December 6, 2023, to February 6, 2024. One hundred pieces of two-eyed cane points of RC-88 were used as planting materials. Soaking the cane points in water was done for 24 hours. Thereafter they were removed from water and air-dried for 30 minutes. The bio-stimulant was prepared before the application based on the study protocol. The bio-stimulant was diluted in distilled water and applied at the base of the plant using a measuring cup for even distribution. Regular monitoring for the presence of pests/diseases was done including watering. There were five (5) treatments, replicated four (4) times using Complete Randomized Design (CRD). Statistical analysis revealed that most of the characteristics of sugarcane plants significantly correlated with roots and biomass accumulation when applied with different levels of concentrations of bio-stimulant concentration at the pre-tillering stage of sugarcane. The use of 500ml Bio-stimulant significantly influenced the germination, tiller height, weight of tillers, weight of roots, length of roots, and biomass. This study recommends the use of 500ml bio-stimulant in enhancing the rooting and biomass accumulation of sugarcane setts at pre-tillering stage.



References:

  1. Abou Chehade, L., Al Chami, Z., De Pascali, S.A., Cavoski, I., & Fanizzi, F. P., (2018). Bio-stimulants from food processing by-products: Agronomic, quality and meta-bolic impacts on organic tomato (Sola-num lycopersicum L.). J. Sci. Food Agric. , 98, https://www.mdpi.com/1422-0067/24/11/9720#B5-ijms-24-09720.
  2. Albrecht, U. (2019). Plant Bio-stimulants: Defi-nition and overview of categories and ef-fects. EDIS, 2019(3). https://doi.org/10.32473/edis-hs1330-2019.
  3. Ali, Q., Shehzad, F., Waseem, M., Shahid, S., Hussain, A.I., Haider, M. Z., Habib, N., Hussain, S., & Javed, M. (2020). M.T. Plant-based bio-stimulants and plant stress responses. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I; Springer: Berlin/Heidelberg, Germany,; pp. 625–661. DOI: 10.1002/jsfa.8610.
  4. Aluko O. O., Li, C., Wang, Q., & Liu H. (2021). Sucrose utilization for improved crop yields: (A review article). Int. J. Mol. Sci. 2021;22:4704. doi: 10.3390/ijms22094704. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099517/#B23-ijms-23-05161.
  5. Amanah, D. M. & Putra, S. M. (2018). Sugar-cane: Organo-Mineral fertilizers and bio-stimulants sugarcane technology and re-search Chapter 10 pp 193-206.
  6. Anggraeni, L., Pratama, A., Putri, P. H., & Wahyudi, W. (2022). Effect of bio-stimulant and silica application on sugar-cane (Saccharum officinarum L.) produc-tion. IOP Conference Series: Earth and Environmental Science, 974(1), 012077. https://doi.org/10.1088/1755-1315/974/1/012077.
  7. Assainar, S. K. Abbott, L. K., Mickan, B. S., Whiteley, A. S., Siddique, K. H. M., & So-laiman, Z. M. (2018). Response of wheat to a multiple species microbial inoculant compared to fertilizer application. Front. Plant Sci., 9, 1601.
  8. Ball-Codho, S., Tiessen, H., Stewart JW. B., (2018). Root dynamics in plant and ra-toon crops of sugarcane. Plant & Soil. 1992;142: 297-305.
  9. Berg, S., Dennis, P. G., Paungfoo-Lonhienne, C., Anderson, J., Robinson, N., Brackin, R., Royle, A., DiBella, L., & Schmidt, S., (2020). Effects of commercial microbial bio-stimulants on soil and root microbial communities and sugarcane yield. Biol Fertil Soils 56:565–580. https://doi.org/10.1007/s00374-019-01412-4.
  10. Castellano-Hinojosa, A., Meyering, B., Nuzzo, A., Strauss, S. L., & Albrecht, U. (2021). Ef-fect of plant bio-stimulants on root and plant health and the rhizosphere micro-biome of citrus trees in huanglongbing-endemic conditions. Trees 35:1525–1539. https://doi.org/10.1007/s00468-021-02133-8.
  11. Chen, D., Zhou, W., Yang, J., Ao, J., Huang, Y., Shen, D., Jiang, Y., Huang, Z., & Shen, H., (2021). Effects of seaweed extracts on the growth, physiological activity, cane yield and sucrose content of sugarcane in China. Front. Plant Sci. 12:659130. doi: 10.3389/fpls.2021.659130https://www.fron-ti-er-sin.org/articles/10.3389/fpls021.659130/full.
  12. CIRAD (2023). Sugarcane. https://www.cirad.fr/en/our-activities-our-impact/tropical-value-chains/sugarcane/plant-and-uses.
  13. Clemente, P. R. A., Bezerra, B. K. L., Da Silva, V. S. G., Santos, J. C. M. D., & Endres, L. (2017). Root growth and yield of sugar-cane as a function of increasing gypsum doses. Pesquisa Agropecuária Tropical, 47(1), 110–117. https://doi.org/10.1590/1983-40632016v4742563.
  14. Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y., (2017) Bio-stimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci 8:2202. https://doi.org/10.3389/fpls.2017.02202.
  15. Devi, T. C., Gouri, V., Naidu, N. V., & Rao, K. P., (2011). Studies on the effect of sett size, seed rate and sett treatment on yield and quality of sugarcane. Indian J. Sugarcane Technology. 26(2):59-60. https://iopscience.iop.org/article/10.1088/1755-1315/807/4/042019/pdf.
  16. De Vasconcelos, A. C., & Chaves, L. H. G. (2020). Bio-stimulants and their role in improving plant growth under Abiotic Stresses. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.88829.
  17. Dholariya, S. J., & Orrick. J. A., (2022). Bio-chemistry, Fructose Metabolism. https://www.ncbi.nlm.nih.gov/books/NBK576428/.
  18. Drobek, M., Frąc, M., & Cybulska, J., (2019). Plant bio-stimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress- A review, Agron.. 9. http://ruffordorg.s3.amazonaws.com/media/project_reports/International%20Jour-nal%20of%20Agricultural%20Sciences%20and%20Veterinary%20Medicine%2C%20Vol%208%20%282%29%2C%20May%202020.pdf.
  19. Ertani, A., Nardi, S., Francioso, O., Pizzeghello, D., Tinti, A., & Schiavon, M. (2019). Me-tabolite-targeted analysis and physiologi-cal traits of Zea mays L. in response to application of Leonardite-Humate and Lignosulfonate-Based products for their evaluation as potential Bio-stimulants. Agronomy, 9(8), 445. https://doi.org/10.3390/agronomy9080445.
  20. Filatov, V.P. tissue treatment. (Doctrine on bi-ogenic stimulators). II. Hypothesis of tis-sue therapy, or the doctrine on biogenic stimulators. Priroda 1951, 12,20-28. https://www.mdpi.com/2223-7747/11/1/162#B52-plants-11-00162.
  21. Haripriya, S., (2022). Mitigation of plant abiot-ic stress by microorganisms. Applicability and Future Directions 2022 pages 273-297.https://doi.org/10.1016/B978-0-323-90568-8.00013-4 https://www.sciencedirect.com/science/book/9780323905688.
  22. Husna, S., Fareen, S., & Shamsul H., (2020). Glucose: Sweet or bitter effects in plants-a review of current and future perspec-tives. Carbohydrate Research Vol. 487. https://www.sciencedirect.com/science/arti-cle/abs/pii/S0008621519305142#:~:text=Glucose%20is%20a%20soluble%20sugar,plants%20is%20regulated%20by%20glucose.
  23. Jung, I. L., (2014.) Soluble extract from Moringa oleifera leaves with a new anti-cancer activity. PLoS ONE 9:e95492–e95492. https://doi.org/10.1371/journal.pone.0095492.
  24. Karapouloutidou, S. D., (2019). Effects of bio-stimulant and organic amendment on soil properties and nutrient status of Lactuca sativa in a Calcareous saline-sodic soil. Agriculture 2019, 9, 164.
  25. https://www.researchgate.net/publication/373482203_The_Application_of_Arbuscu-lar_Mycorrhizal_Fungi_as_Microbial_Biostimu-lant_Sustainable_Approaches_in_Modern_Agriculture
  26. Kumalawati1, Z., Kafrawi1, S., Mulyani1, I., Nur1, D., Bestari1, R., Budi, A., & Amin, A. R., (2021). Effect of sucrosin bio-stimulant on early growth of sugarcane (Saccharum officinarum L.) var. CM 2012. https://iopscience.iop.org/article/10.1088/1755-1315/807/4/042019/meta.
  27. Kumar, H. D., & Aloke, P., (2020) Role of bio-stimulant formulations in crop produc-tion: (An Overview). International Journal of Agricultural Sciences and Veterinary Medicine Vol. 8 (2), May (2020).
  28. Kocira A., Swieca M., Kocira S., Złotek U. & Jakubczyk A., (2018). Enhancement of yield, nutritional, and nutraceutical prop-erties of two common bean cultivars fol-lowing the application of seaweed extract (Ecklonia maxima), Saudi. J. Biol. Sci., 25, 563-571.
  29. Lamar, R.T. (2020) Possible Role for Electron Shuttling Capacity in Elicitation of PB Ac-tivity of Humic Substances on Plant Growth Enhancement. Chem. Biol. Plant Bio-stimulant 97-121.
  30. Li, J., Van Gernwwey, T., & Geelen, D. (2022). A Meta-Analysis of bio-stimulant yield ef-fectiveness in field trials. Front. Plant Sci. 2022.
  31. https://www.researchgate.net/publication/373830140_agriculture_Review_Bio-stimu-lants_in_the_Production_of_Forage_Grasses_and_Turfgrasses.
  32. Jacomassi, Lucas Moraes (2021), Seaweed ex-tract-based bio-stimulant as drought mit-igation in sugarcane. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sugarcane+biomass+applied+with+BioStimulant&btnG=#d=gs_qabs&t=1707374804976&u=%23p%3DTJb3RfOrDvwJ.
  33. Jacomassi, L.M., Oliveira-Viveiros, J., Oliveira, M. P., Momesso, L., Siqueira, G. F., & Cos-ta-Crusciol, C. A., (2022) A seaweed ex-tract-based bio-stimulant mitigates drought stress in sugarcane. https://www.frontiersin.org/articles/10.3389/fpls.2022.865291/full
  34. Madhav, T., Bindu, G. S. M., Kumar, M., & Naik, C. M. (2017). Study on Root Characteris-tics of Sugarcane (Saccharum officinar-um) Genotypes for Moisture Stress. Inter-national Journal of Plant and Soil Science,
  35. Meyer, J., Rein, P., Turner, P., & Mathias, K (2011). Good management practices manual for the cane sugar industry (Fi-nal). The International Finance Corpora-tion, Johannesburg, South America. www.ifc.org. pp. 36-40.
  36. Moraes, E. R., Mageste, J. G., Lana, R. QM., Sil-va, R. V., & Camargo, R., (2017) Sugar-cane: Organo-Mineral Fertilizers and Bio-stimulants DOI: 10.5772/intechopen.71493.
  37. Moreno-Hernández, J. M., Benítez-García, I., Mazorra-Manzano, M. A., Ramírez-Suárez, J. C., & Sánchez, E., (2020). Strat-egies for production, characterization and application of protein-based bio-stimulants in agriculture: A review. Chil. J. Agric. Res. , 80, 274–289. doi: 10.1002/jsfa.8610. Retrieved January 19, 2024.
  38. Nosheen S, Ajmal I, Song Y (2021). Microbes as bio-fertilizers, a potential approach for sustainable crop production. Sustainabil-ity 13:1868. https://doi.org/10.3390/su13041868.
  39. Oliveira, M. W., Silva, V. S. G., Oliveira, D. C., Silva, J. C. T., & Reis, R. M. S. (2012). Pro-duction and forage quality of two sugar-cane varieties affected by fertilization with copper and manganese. Revista Científica de Produção Animal, 14(2), 165-168. https://doi.org/10.15528/2176-4158/rcpa.v14n2p165-168. Retrieved January 3, 2024.
  40. Patel D. & Patel R. (2014). Influence of sett size, seed rate and sett treatment on yield and quality of sugarcane. The Bioscan 9(1):55-57 https://iopscience.iop.org/article/10.1088/1755-1315/807/4/042019/pdf.
  41. Philippine Statistics Authority (2018-2023), (2018). https://psa.gov.ph/major-non-food-industrialcrops/sugarcane#:~:text=The%20sugarcane%20production%20from%20April,the%20same%20quarter%20of%202022.
  42. Reyes, J. A., Casas, D. A., Gandia, J. L., Pardu-cho, MJ. L., Renovalles, E. M., Quilloy, E. P., & Delfin, E. F., (2023). https://www.sciencedirect.com/science/article/pii/S2666154323001837#bib3.
  43. Ricci, M., Tilbury, L., Daridon, B., & Sukalac, K. (2019). General principles to justify plant bio-stimulant claims. Front. Plant Sci., 10, 1-8 https://doi.org/10.3390/agronomy11071297.
  44. Santos, G. A., Nicchio, B., Borges, M. A., Gual-berto, C. de A. C., Pereira, H. S., & Korn-dörfer, G. H. (2020). Effect of bio-stimulants on tilling, yield and quality component of sugarcane. Brazilian Jour-nal of Development, 6(5), 29907–29918. https://doi.org/10.34117/bjdv6n5-445.
  45. Saro,l R. J., Serrano, J. Z., Guiyab, N C, Casupanan, A. M., Manlapaz, B. G., Olalia, L. C., & Mora, J. M., (2018). Root density, distribution and yield relationships of high yielding sugarcane varieties under sandy soil condition. https://iopscience.iop.org/article/10.1088/1755-1315/974/1/012077/pdfu.
  46. Shah, Z. H., Rehman, H. M., Akhtar, T., Alsama-dany, H., Hamooh, B.T., Mujtaba, T., Daur, I., Al Zahrani, Y., Alzahrani, H. A. S., & Ali, S., (2018). Humic substances: Determin-ing potential molecular regulatory pro-cesses in plants. Front. Plant Sci., 9, 263.
  47. Singh, I., Anand, K. G., Solomon, S., Shukla, S. K., Rai, R., & Zodape, S. T., (2018). Can we. not mitigate climate change using seaweed based bio-stimulant: (case study) J. Clean Prod. 204, 992–1003. DOI: 10.1016/j.jclepro.2018.09.070.
  48. Souza-Neta, M. L., Oliveira, F. A., Torres, S. B., Souza, A. A. T., Silva, D. D. A., Santos, S. T., & Gherkin, E. W., (2018). Cultivation in saline medium using seeds treated with a bio-stimulant. 40: e35216. doi: 10.4025/actasciagron. v40i1.35216 Acta Scientiarum Agronomy. https://www.intechopen.com/chapters/69956.
  49. Sugar Regulatory Administration (2024).The Philippine Sugarcane Industry: Challeng-es and Opportunities. https://www.sra.gov.ph/the-philippine-sugarcane-industry-challenges-and-opportunities/.
  50. Toungus, M. D. (2018). Plant growth substanc-es in crop production (A Review). Inter-national J. Innov. Agr. & Biol. Res. 6(3):1-8. https://iopscience.iop.org/article/10.1088/1755-1315/807/4/042019/pdf. Re-trieved January 19, 2024.
  51. Yamshi Arif, A. B., & Hayat, S., (2022), Moringa oleifera Extract as a natural plant bio-stimulant. doi: 10.1007/s00344-022-10630-4.
  52. Yousfi, S., Marín, J., Parra, L., Lloret, J., & Mau-ri, P. V., (2021). A rhizogenic biostimulant effect on soil fertility and root growth of turfgrass. Agronomy, 11(3), 573. https://doi.org/10.3390/agronomy11030573 https://www.mdpi.com/2073-4395/11/3/573#:~:text=The%20biostimu-lant%20application%20improved%20microbi-al,pH%20and%20electrical%20conductivity%20decreased.
  53. Yulianingtyas A. P., Sebayang H. T., & Tyasmo-ro S. Y. (2015). Pengaruh komposisi me-dia tanam dan ukuran bibit pada Pertum-buhan pembibitan tebu (Saccharum of-ficinarum L) Jurnal Produksi Tanaman 3 (5):362-369. https://iopscience.iop.org/article/10.1088/1755-1315/807/4/042019/pdf.
  54. Zhao, Y., (2022). Genetic improvement of sug-arcane (Saccharum spp.) contributed to high sucrose content in China based on an analysis of newly developed varieties, 1789, https://doi.org/10.3390/AGRICULTURE12111789. Page 1789. https://pubmed.ncbi.nlm.nih.gov/37151717/#:~:text=The%20improvement%20of%20sugarcane%20productivity,sugarcane%20productivity%20and%20sugar%20yield.
  55. Zulfiqar F., Casadesús, A., Brockman, H., & Munné-Bosch S., (2020). An overview of plant-based natural biostimulants for sus-tainable horticulture with a particular fo-cus on moringa leaf extracts. Plant Sci-ence.
  56. Zulfiqar, F., Younis, A., Finnegan, P. M., & Fer-rante, A., (2020). Comparison of soaking corms with moringa leaf extract alone or in combination with synthetic plant growth regulators on the growth, physi-ology, and vase life of sword lily. https://www.mdpi.com/2223-7747/9/11/1590