HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 5 no. 10 (2024)

Growth and Productivity of Carrots (Daucus carota) Applied with Bio-Stimulant Solution

Paulino A Oñal | Eged B. Cabillan | Nathaniel Arly A. De la Paz | Christian Togle | Francis E. Andrade | Allan G. Gayat | Owen B. Buenafe

Discipline: agricultural sciences

 

Abstract:

Carrots (Daucus carota) is an essential vegetable because of its high beta-carotene (Vitamin A). This study seeks to determine the growth and yield performance of carrots applied with different concentrations of bio-stimulant (BSS). This study was conducted at the University of Negros Occidental – Recoletos, School of Agriculture last December 28, 2023 to March 27, 2024. Eighty (80) carrot seeds (Kaneko Bonfire Variety) were used as planting materials. The seedlings were transferred in polyethylene bags using the Complete Randomized Design (CRD) with four treatments replicated four times. The treatments were the Control (no BSS), 10%, 20%, and 30% BSS. The BSS was applied at the plant base 15 and 35 days after transplanting (DAT). The data gathered was analyzed utilizing the STAR 2.1.0 software. To determined the relationships among different characteristics, we used Pearson's Product Moment Correlation Analysis to assess the correlations and associations. The results indicate that plants applied with 30%BSS have an average stem length of 17.79cm, more foliage of 7.95, bigger taproots with 9.28cm, heavier tap-roots of 32.45gm, heavy stems and leaves at 16.35gm, biomass accumulation of 46.60gm, and average yield of 16,225kg/hectares. The control (0 BSS), on the other hand, has an average stem length of 14.75cm, fewer leaves at 7.10, smaller taproots with 7.59cm, lighter taproots of 16.90gm, the lighter weight of stems and leaves at 10.15gm, smaller biomass acculation of 28.98gm, and lower yields at 8,450kg/hectare. This study recommends the application of 30% bio-stimulant concentration in enhancing the growth and yield performance of the carrot plants.



References:

  1. Afridi, M. S., Ali, S., Salam, A., Terra, W. C., Ha-feez, A., Sumaira, N., Ali, B., AlTami, M. S., Ameen, F., Ercisli, S., Marc, R. A., Medei-ros, F. H. V., & Karunakaran, R. (2022). Plant Microbiome Engineering: Hopes or hypes. Biology, 11(12), 1782. https://doi.org/10.3390/biology11121782
  2. Ahmad, N., Cawood, N., Iqbal, N., Ariño, N., Ba-tool, N., Tariq, N., Azam, N., & Akhtar, N. (2019). Phytochemicals in Daucus carota and Their Health Benefits—Review Arti-cle. Foods, 8(9), 424. https://doi.org/10.3390/foods8090424.
  3. Amirkhani, M., Mayton, H. S., Netravali, A. N., & Taylor, A. G. (2019). A seed coating de-livery system for Bio-Based biostimulants to enhance plant growth. Sustainability, 11(19), 5304. https://doi.org/10.3390/su11195304.
  4. Amirkhani, M., Netravali, A. N., Huang, W., & Taylor, A. G. (2016). Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience, 51(9), 1121–1126. https://doi.org/10.21273/hortsci10913-16
  5. Anthony, K. (2018, September 18). Carote-noids: Everything you need to know. Healthline. https://www.healthline.com/health/carotenoids
  6. Bastiaanse, H., Théroux-Rancourt, G., & Tixier, A. (2017). Abiotic stress. In A. Groover & Q. Cronk (Eds.), Plant genetics and ge-nomics: crops and models (pp. 275–302). Springer, Cham. https://doi.org/10.1007/7397_2016_13
  7. Bolton, A., Klimek-Chodacka, M., Martin-Millar, E., Grzebelus, D., & Simon, P. W. (2020). Genome-assisted improvement strategies for climate-resilient carrots. In C. Kole (Ed.), Genomic designing of cli-mate-smart vegetable crops (pp. 309–343). Springer, Cham. https://doi.org/10.1007/978-3-319-97415-6_6
  8. Caruso, G., De Pascale, S., Cozzolino, E., Cucini-ello, A., Cenvinzo, V., Bonini, P., Colla, G., & Rouphael, Y. (2019). Yield and nutri-tional quality of Vesuvian Piennolo To-mato PDO as affected by farming system and biostimulant application. Agronomy, 9(9), 505. https://doi.org/10.3390/agronomy9090505.
  9. De Vasconcelos, A. C. F., & Chaves, L. H. G. (2020b). Biostimulants and their role in improving plant growth under abiotic stresses. In S. Mahyar (Ed.), Biostimulants in Plant Science. https://doi.org/10.5772/intechopen.88829
  10. Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant Biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic Stress—A review. Agronomy, 9(6), 335. https://doi.org/10.3390/agronomy9060335
  11. Du Jardin, P. (2015). Plant biostimulants: Defi-nition, concept, main categories and Reg-ulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  12. Fabianová, J., Andrejiová, A., Šlosár, M., Hegedűsová, A., & Benzová, L. (2021). The effect of soil biostimulant AgriFul on the selected quantitative and qualitative parameters of carrot (Daucus carota subsp. sativus (Hoffm.) Arcang.). Slovak Journal of Food Sciences, 15, 1120–1127. https://doi.org/10.5219/1696
  13. Gavelienė, V., Šocik, B., Jankovska-Bortkevič, E., & Jurkonienė, S. (2021). Plant Micro-bial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops. Microorganisms, 9(9), 1850. https://doi.org/10.3390/microorganisms9091850
  14. Grabowska, A., Kunicki, E., Sękara, A., Kalisz, A., & Wojciechowska, R. (2012). The ef-fect of cultivar and biostimulant treat-ment on the carrot yield and its quality. Journal of Fruit and Ornamental Plant Research, 77(1), 37–48. https://doi.org/10.2478/v10032-012-0014-1
  15. Haq, R., & Prasad, K. (2015). Nutritional and Processing aspects of carrot (Daucus carota)-A review. South Asian Journal of Food Technology and Environment, 1(1), 1–14. https://doi.org/10.46370/sajfte.2015.v01i01.01
  16. Jeba, F. R., Farzana, M., Tabassum, T., Raham-an, T. I., Ullah, A., Araf, Y., Ansary, M. W. R., Gupta, D. R., Chakraborty, M., & Islam, T. (2022b). Biostimulants for promoting eco-friendly sustainable agriculture. In M. Hasanuzzaman (Ed.), Biostimulants for Crop Production and Sustainable Agricul-ture (pp. 36–54). https://doi.org/10.1079/9781789248098.0003
  17. Lau, S. E, W. F., A. Teoh, E. Y., Tan, B. C. (2022). Microbiome engineering and plant bi-ostimulants for sustainable crop im-provement and mitigation of biotic and abiotic stresses. Discover Food 2, 9. Doi:10:1007/s44187-022-00009-5.
  18. Nikmatullah, A., Khairunnisa, N., Amalia, R., Zawani, K., & Sarjan, M. (2021). Effect of biofertilizer on growth and yield of carrot (Daucus carota l.) plants in different lati-tudes of Lombok Island. IOP Conference Series. Materials Science and Engineering, 1098, 042107. https://doi.org/10.1088/1757-899x/1098/4/042107
  19. Pobereżny, J., Szczepanek, M., Wszelaczyńska, E., & Prus, P. (2020). The Quality of Car-rot after Field Biostimulant Application and after Storage. Sustainability, 12(4), 1386. https://doi.org/10.3390/su12041386.
  20. Qiu, Y., Amirkhani, M., Mayton, H., Chen, Z., & Taylor, A. G. (2020). Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agron-omy, 10(2), 154. https://doi.org/10.3390/agronomy10020154
  21. Que, F., Hou, X., Wang, G., Xu, Z., Tan, G., Li, T., Wang, Y., Khadr, A., & Xiong, A. (2019). Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research, 6, 69. https://doi.org/10.1038/s41438-019-0150-6
  22. Renaud, C., Leys, N., & Wattiez, R. (2023). Pho-tosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture. Jour-nal of Plant Interactions, 18(1). https://doi.org/10.1080/17429145.2023.2242697
  23. Roy, D. (2024). Role of Biostimulants towards Sustainable agriculture: A review. Food and Scientific Reports, 5, 9. https://foodandscientificreports.com/details/role-of-biostimulants-towards-sustainable-agriculture-a-review.html
  24. Saa, S., Rio, A. O., Castro, S., & Brown, P. H. (2015). Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Fron-tiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00087
  25. Szczepanek, M., Pobereżny, J., Wszelaczyńska, E., & Gościnna, K. (2020). Effect of bi-ostimulants and storage on discoloration potential of carrot. Agronomy, 10(12), 1894. https://doi.org/10.3390/agronomy10121894
  26. Tariq, U., Younis, A., Ahsan, M., & Nadeem, M. (2022c). Biostimulant-induced improve-ment of soil health and water-use effi-ciency in plants. In M. Hasanuzzaman (Ed.), Biostimulants for Crop Production and Sustainable Agriculture (pp. 72–84). https://doi.org/10.1079/9781789248098.0005
  27. Van Oosten, M. J., Pepe, O., De Pascale, S., Sil-letti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as allevia-tors of abiotic stress in crop plants. Chem-ical and Biological Technologies in Agri-culture, 4. https://doi.org/10.1186/s40538-017-0089-5
  28. Xie, Q., & Wang, C. (2022). Polyacetylenes in herbal medicine: A comprehensive re-view of its occurrence, pharmacology, toxicology, and pharmacokinetics (2014-2021). Phytochemistry, 201, 113288. https://doi.org/10.1016/j.phytochem.2022.113288.
  29. Yousfi, S., Marín, J., Parra, L., Lloret, J., & Mau-ri, P. V. (2021). A rhizogenic biostimulant effect on soil fertility and roots growth of turfgrass. Agronomy, 11(3), 573. https://doi.org/10.3390/agronomy11030573
  30. Zamana, S. P., Kondratieva, T. D., Savich, V. I., Fedorovsky, T. G., & Sokolov, S. A. (2022). The influence of biostimulants on the qualitative composition of carrots. IOP Conference Series. Earth and Environmen-tal Science, 1045, 012087. https://doi.org/10.1088/1755-1315/1045/1/012087
  31. Zulfiqar, F., Moosa, A., Ali, H. M., Bermejo, N. F., & Munné-Bosch, S. (2024). Biostimu-lants: a sufficiently effective tool for sus-tainable agriculture in the era of climate change? Plant Physiology and Biochemis-try, 211, 108699. https://doi.org/10.1016/j.plaphy.2024.108699