HomeJournal of Interdisciplinary Perspectivesvol. 2 no. 12 (2024)

Antimicrobial Activity of Kangkong and Paragis Leaf Extracts against Klebsiella oxytoca

Raymund J. Capagas

Discipline: biology (non-specific)

 

Abstract:

The global spread of multidrug resistance challenges antimicrobial therapy, necessitating the search for alternative approaches. The present study assessed the antimicrobial efficacy of the methanolic leaf extracts of Ipomoea aquatica Forssk. (Kangkong), Eleusine indica (L.) Gaertn. (Paragis), Moreover, its combination at varying concentrations of 25%, 50%, 75%, and 100% against Klebsiella oxytoca using established microbiological techniques. Fifty (50) grams of powdered leaves from the Ipomoea aquatica Forssk. (Kangkong) plant was soaked in 375 mL of 95% methanol for 48 hours (2 days) with intermittent stirring—similarly, 50 grams of Eleusine indica (L.) Gaertn. (Paragis) were processed using the same method. The macerated powdered leaf samples were filtered using a Whatman filter paper No. 1 and extracted using a rotary evaporator. The obtained extracts were utilized to prepare varying concentrations of 25%, 50%, 75%, and 100% of methanolic leaf extracts for each plant. Positive control (Tigecycline) and negative control (10% DMSO), along with the preparation of extracts, were also prepared. The antimicrobial efficacy of these methanolic leaf extracts at different concentrations and the controls were evaluated against Klebsiella oxytoca using the disk diffusion method. The results obtained indicate that the methanolic leaf extracts of Ipomoea aquatica Forssk. (Kangkong) and Eleusine indica (L.) Gaertn. (Paragis) did not exhibit any inhibitory effects on Klebsiella oxytoca. Both plants' combined methanolic leaf extracts also showed non-inhibitory effects, indicating that Klebsiella oxytoca is resistant to both plant extracts and, thus, did not yield a synergistic effect. This study provides a scientific understanding of the antimicrobial efficacy of the plants' properties. Further investigation is needed to assess alternative extraction and methods to determine the antimicrobial efficacy of the plant extracts.



References:

  1. Adoho, A. C. C., Zinsou, F. T. A., Olounladé, P. A., Azando, E. V. B., Hounzangbé-Adoté, M. S., & Gbangboche, A. B. (2021). Review of the literature of Eleusine indica: phytochemical, toxicity, pharmacological and zootechnical studies. Journal of Pharmacognosy and Phytochemistry, 10(3), 29–33. https://doi.org/10.22271/phyto.2021.v10.i3a.14060
  2. Alaekwe, Ajiwe, Ajiwe, Aningo, A., I. O, Ajiwe, V. I. E, Ajiwe, A. C. &. Aningo, G. N. (2015). Phytochemical and anti–microbial screening of the aerial parts of Eleusine indica. Indian Journal of Pure & Applied Biosciences, 3(1), 257-264. https://tinyurl.com/4dw368s9
  3. Allemailem, K. S. (2021). Antimicrobial potential of naturally occurring bioactive secondary metabolites. Journal of Pharmacy and Bioallied Sciences, 13(2), 155.  https://doi.org/10.4103/jpbs.jpbs_753_20
  4. Al-Khikani, F. H. O., Abadi, R. M., & Ayit, A. S. (2020). Emerging carbapenemase Klebsiella oxytoca with multidrug resistance implicated in urinary tract infection. Biomedical and Biotechnology Research Journal, 4(2), 148. https://doi.org/10.4103/bbrj.bbrj_165_19
  5. Al-Zubairi, A. S., Abdul, A. B., Abdelwahab, S. I., Peng, C. Y., Mohan, S., & Elhassan, M. M. (2011). Eleucine indica possesses antioxidant, antibacterial and cytotoxic properties. Evidence-Based Complementary and Alternative Medicine, 2011(1), 965370. https://doi.org/10.1093/ecam/nep091
  6. Aslam, B., Wang, W., Arshad, M., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/idr.s173867
  7. Bhaigybati, T., Sanasam, S., Gurumayum, J., Singh, L. R., & Devi, P. G. (2020). Phytochemical profiling, antioxidant activity, antimicrobial activity and GC-MS analysis of Ipomoea aquatica Forsk collected from EMA market, Manipur.  J Pharmacogn Phytochem, 9(1), 2335-2342. https://tinyurl.com/mwnnjscx
  8. Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajavaL.) on Two Gram-Negative and Gram-Positive Bacteria. International Journal of Microbiology, 0(0), 1–7. https://doi.org/10.1155/2013/746165
  9. Boakye, Y. D. (2016). Anti-infective properties and time-kill kinetics of phyllanthus muellerianus and its major constituent, geraniin. Medicinal Chemistry, 6(2). https://doi.org/10.4172/2161-0444.1000332
  10. Caccam, G. G., Mendoza, J. M., Rico, N. a. G., Robles, J. a. A., & Taculing, L. D. (2020). Comparative study of Paragis (Eleusine indica) and Guava (Psidium guajava) Methanolic leaf extract against Staphylococcus aureus and Escherichia coli. Health Research Bulletin, 7, 45-64. https://tinyurl.com/3xcaarja
  11. Cadman, B. (2023). Klebsiella oxytoca infection: What you should know. Retrieved from: https://www.medicalnewstoday.com/articles/321072
  12. Cancaya, İ. İ. T., & Somuncuoglu, E. I. (2021). Potential and Prophylactic Use of Plants Containing Saponin-Type Compounds as Antibiofilm Agents against Respiratory Tract Infections. Evidence-based Complementary and Alternative Medicine, 0(0), 1–14. https://doi.org/10.1155/2021/6814215
  13. Dago, T. R., Zewudie, A., Mamo, Y., Feyissa, D., & Geleta, S. (2020). Multi-Drug Resistant Post Corneal Repair Klebsiella oxytoca's Keratitis. International medical case reports journal, 13, 537–541. https://doi.org/10.2147/IMCRJ.S278625
  14. De Paula Barbosa, A. (2014). An overview on the biological and pharmacological activities of saponins. Int J Pharm Pharm Sci, 6(8), 47-50. https://tinyurl.com/2p93yja3
  15. Dias, M. C., Pinto, D., & Silva, A. M. S. (2021). Plant flavonoids: chemical characteristics and biological activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377
  16. Ettebong, Ette & Obot, Daniel. (2020). A Systematic review on Eleusine indica (L.) Gaertn.): From ethnomedicinal uses to pharmacological activities. Journal of Medicinal Plants Studies, 8(4), 262-274. https://tinyurl.com/4afystrz
  17. Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y., Gan, R.-Y., & Corke, H. (2020). Tannins as an alternative to antibiotics. Food Bioscience, 38, 100751. https://doi.org/10.1016/j.fbio.2020.100751
  18. Frost, J. (2024). Experimental Design: Definition and types. Retrieved from https://statisticsbyjim.com/basics/experimental-design/
  19. Gauro, R., & Amatya, P. (2022). Phytochemical screening and biological activities of Ipomoea aquatica forssk. World journal of pharmacy and pharmaceutical Sciences, 11(9). https://doi.org/10.20959/wjpps20229-23165
  20. Holland, K. (2017). What is Klebsiella oxytoca? Retrieved from https://www.healthline.com/health/klebsiella-oxytoca
  21. Izah, S. C. (2018). Some determinant factors of antimicrobial susceptibility pattern of plant extracts. Research and Review Insights, 2(3), 1-4. https://doi.org/10.15761/rri.1000139
  22. Md. Kamruzzaman. (2015). In vitro antimicrobial activity of different extracts of gotu kola and water spinach against pathogenic bacterial strains. Current Research in Microbiology and Biotechnology, 3(4), 663-669. https://doi.org/10.13140/RG.2.1.2180.4642
  23. Kelkar, G. (2024). What is Experimental Design? A Comprehensive Guide for 2023. Retrieved from https://tinyurl.com/mpnfvj9u
  24. Khan, R., Hoque, S. M., Hossain, K.F., Siddique, A.B., Uddin, K., & Rahman, M. (2020) Green synthesis of silver nanoparticles using Ipomoea aquatica leaf extract and its cytotoxicity and antibacterial activity assay. Green Chemistry Letters and Reviews, 13(4), 303-315.  https://doi.org/10.1080/17518253.2020.1839573
  25. Konwar, M., Sarma, M. P., Loying, S., Nayak, R., & Bhagawati, P. (2021). Phytochemical analysis and antimicrobial activity of leaves of Ipomoea aquatica forssk. International Journal of Botany Studies, 6(5), 1310-1314.  https://tinyurl.com/4e7fhrza
  26. Larghi, E. L., Bracca, A. B., Arroyo Aguilar, A. A., Heredia, D. A., Pergomet, J. L., Simonetti, S. O., & Kaufman, T. S. (2015). Neocryptolepine: A Promising Indoloisoquinoline Alkaloid with Interesting Biological Activity. Evaluation of the Drug and its Most Relevant Analogs. Current topics in medicinal chemistry, 15(17), 1683–1707. https://doi.org/10.2174/1568026615666150427113937
  27. Li, N., Tan, Sn., Cui, J. et al. (2014). PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. J Antibiot 67, 689–696. https://doi.org/10.1038/ja.2014.49
  28. Liu, X., & Lu, M. (2023). Normal saline: Past, present, and future. Science Progress, 106(2), 003685042311688. https://doi.org/10.1177/00368504231168821
  29. Mahon, C. R., & Lehman, D. C. (2019). Textbook of Diagnostic Microbiology (6th ed.) Elsevier.
  30. McPherson, R. A., & Pincus, M. R. (2021). Henry’s Clinical Diagnosis and Management by Laboratory Methods E-Book. Elsevier Health Sciences.
  31. Moradigaravand, D., Martin, V., Peacock, S. J., & Parkhill, J. (2017). Population Structure of Multidrug-Resistant Klebsiella oxytoca within Hospitals across the United Kingdom and Ireland Identifies Sharing of Virulence and Resistance Genes with K. pneumoniae. Genome Biology and Evolution, 9(3), 574–584. https://doi.org/10.1093/gbe/evx019
  32. Nakul, N., Phukan, U., Puzari, M., Sharma, M., & Chetia, P. (2021). Klebsiella oxytoca and Emerging Nosocomial Infections. Current Microbiology, 78(4), 1115–1123. https://doi.org/10.1007/s00284-021-02402-2
  33. Naz, R., Ayub, H., Nawaz, S., Islam, Z. U., Yasmin, T., Bano, A., Wakeel, A., Zia, S., & Roberts, T. H. (2017). Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complementary and Alternative Medicine, 17(1), 302. https://doi.org/10.1186/s12906-017-1815-z
  34. Rathee, P., Chaudhary, H., Rathee, S., Rathee, D., Kumar, V., & Kohli, K. (2009). Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflammation and Allergy - Drug Targets, 8(3), 229–235. https://doi.org/10.2174/187152809788681029
  35. Safe, S., Jayaraman, A., Chapkin, R. S., Howard, M., Mohankumar, K., & Shrestha, R. (2021). Flavonoids: structure–function and mechanisms of action and opportunities for drug development. Toxicological Research, 37(2), 147–162. https://doi.org/10.1007/s43188-020-00080-
  36. Saikia, K., Dey, S., Hazarika, S. N., Handique, G. K., Thakur, D., & Handique, A. K. (2023). Chemical and biochemical characterization of Ipomoea aquatica: Genoprotective potential and inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Frontiers in Nutrition, 10, 1304903. https://doi.org/10.3389/fnut.2023.1304903
  37. Sánchez, E., Rivas Morales, C., Castillo, S., Leos-Rivas, C., García-Becerra, L., & Ortiz Martínez, D. M. (2016). Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evidence-Based Complementary and Alternative Medicine, 2016(1), 1572697. https://doi.org/10.1155/2016/1572697
  38. Sasikala, M., & Sundaraganapathy, R. (2017). Optimization of extraction method for Ipomoea aquatica forssk. [indian river spinach] from its whole plant. International Journal of Recent Scientific Research, 8(5), 16967–16971. https://doi.org/10.24327/ijrsr.2017.0805.0254
  39. Shaaban, M. T., Ghaly, M. F., & Fahmi, S. M. (2021). Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria. Journal of Basic Microbiology, 61(6), 557–568. https://doi.org/10.1002/jobm.202100061
  40. Shah, P. (2021). Phytochemical analysis and antioxidant activity of Ipomoea aquatica from Ghodaghodi wet land area, Nepal. International Journal of Herbal Medicine, 9(2), 23-27. https://tinyurl.com/4sh6dcjv
  41. Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. Mohd. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90–101. https://doi.org/10.1016/j.sjbs.2014.08.002
  42. Singh, L., Cariappa, M., & Kaur, M. (2016). Klebsiella oxytoca: An emerging pathogen? Medical Journal Armed Forces India, 72, 59–61. https://doi.org/10.1016/j.mjafi.2016.05.002
  43. Sivaraman, D., Muralidaran, P., & Kumar, S. S. (2010). Evaluation of Anti-microbial and anti-inflammatory activity of methanol leaf extract of Ipomoea aquatica Forsk. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 1(2), 258–26. https://tinyurl.com/yexvebux
  44. Sukor, N. S. M., Zakri, Z. H. M., Rasol, N. E., & Salim, F. (2023b). Annotation and Identification of Phytochemicals from Eleusine indica Using High-Performance Liquid Chromatography Tandem Mass Spectrometry: Databases-Driven Approach. Molecules, 28(7), 3111. https://doi.org/10.3390/molecules28073111
  45. Suurbaar, J., Mosobil, R., & Donkor, A. (2017). Antibacterial and antifungal activities and phytochemical profile of leaf extract from different extractants of Ricinus communis against selected pathogens. BMC Research Notes, 10(1). https://doi.org/10.1186/s13104-017-3001-2
  46. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041
  47. Vineetha, N., Vignesh, R., & Sridhar, D. (2015). Preparation, Standardization of Antibiotic Discs and Study of Resistance Pattern for First-Line Antibiotics in Isolates from Clinical Samples. International Journal of Applied Research, 1(11), 624–631.  https://tinyurl.com/j7rmm8my
  48. Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics, 10(3), 318. https://doi.org/10.3390/antibiotics10030318
  49. Yang, J., Long, H., Hu, Y., Feng, Y., McNally, A., & Zong, Z. (2022). Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clinical Microbiology Reviews, 35(1). https://doi.org/10.1128/cmr.00006-21
  50. Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. (2018). Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 19(4), 1114. https://doi.org/10.3390/ijms19041114
  51. Zakri Z.H.M., Suleiman M., Shean Yeaw N., Ngaini Z., Maili S., Salim F. Eleusine indica for Food and Medicine. J. Agrobiotechnol, 12, 68–87. https://doi.org/10.37231/jab.2021.12.2.260
  52. Zhao, Y., Wu, Y., & Wang, M. (2015). Bioactive substances of plant origin. In Springer eBooks.