HomeWVSU Research Journalvol. 12 no. 2 (2023)

Screening of Amylolytic Activity and Morphological Characterization of Amylase-Producing Bacteria from Rice Mill Soil in Tigbauan, Iloilo

Jayvee J. Jore | Mary Rose C. Faderogao | Rey G Tantiado

 

Abstract:

This study was conducted to determine and characterize the populations of amylase-producing bacteria from the three rice mill soils in Tigbauan, Iloilo. Soil samples were collected, characterized, and assessed for the presence of amylase- producing bacteria. Serial dilutions, spread plate method of soil samples on starch agar plates, and incubation for 72 hours were done to detect the presence of zone of amylolytic activity. Soil samples in three rice mills in Tigbauan, Iloilo have the presence of amylase-producing bacteria. Bacterial isolates had very active amylolytic activity after 72 hours of incubation and vary in their colony morphology and cell characteristics. It showed no significant difference on the amylolytic activity among the isolates in the three rice mill sites, indicating comparative amylolytic capability. Biochemical tests and molecular characterization of the bacteria should be done to identify the species of the bacterial isolates.



References:

  1. Aiba,  S.,  Kitai,  K.,  &  Imanaka,  T.  (1983).  Cloning  and  expression  of  thermostable alpha amylase gene from Bacillus stearothermophilus and Bacillus  subtilis. Applied  and  Environmental  Microbiology  Journal.  46(5), 1059- 1065. https://doi.org/10.1128/aem.46.5.1059-1065.1983
  2. Aiyer,  P.V.  (2004).  Effect  of  C:N  ratio  on  alpha  amylase  production  by Bacillus licheniformis SPT 27. African Journal of Biotechnology, 3 (10), 519-522. https://doi.org/10.5897/AJB2004.000-2103
  3. Akpomie,  O.O.,  Akponah,  E.,  &  Okorawhe,  P.  (2012).  Amylase  production  potentials   of   bacterial   isolates   obtained   from   cassava   root   peels.   International Research Journals Agricultural Science Research Journals, 2(2),  95-99.
  4. Akpomie,  O.O.,  Akponah,  E.,  &  Okorawhe,  P.  (2012).  Amylase  production  potentials   of   bacterial   isolates   obtained   from   cassava   root   peels.   International Research Journals Agricultural Science Research Journals, 2(2),  95-99.
  5. Anbu, P., Chaulagain, B. P., & Lakshmipriya, T. (2017). Microbial enzymes and  their  applications  in  industries  and  medicine.  BioMed  Research  International, 17. https://doi.org/10.1155/2017/2195808.2195808
  6. Bahadure,   R.B.,   Agnihotri,   U.S.,   &   Akarte,   S.R.   (2010).   Assay   of   population  density  of  amylase  producing  bacteria  from  different  soil samples  contaminated  with  flowing  effluents.  International  Journal  for  Parasitology  Research, 2,  09-  13.  https://doi.org/10.9735/0975-3702.2.1.9-13
  7. Bose,  K.  &  Das,  D.  (1996).  Thermostable  a-amylase  production  using  B. licheniformis  NRRL  B1438.  Indian  Journal  of  Experimental  Biology,  34, 1279-1282.
  8. Brook, E.J., Stanton, W.R., & Wall-Bridge, A. (1969). Fermentation Methods for protein enrichment of cassava. Biotechnology & Bioengineering. 11, 1271-1284. https://doi.org/10.1002/bit.260110620
  9. Burhan, A., Nisa, U., Gokhan, C., Omer, C., Ashabil, A., & Osman, G. (2003). Enzymatic  properties  of  a  novel  thermophilic,  alkaline  and  chelator  resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Journal Process  Biochemistry, 38,  1397-1403.  https://doi.org/10.1016/S0032-9592(03)00037-2
  10. Cordeiro,  C.A.M.,  Martinas,  M.L.L.,  &  Luciano,  A.  (2003).  Production  and  Properties  of  alpha  amylase  from  thermophilic  Bacillus  species.  Brazilian  Journal  of  Microbiology, 33,  1-3.  https://doi.org/10.1590/S1517-83822002000100012
  11. Dunca,  S.,  Ailiesei,  O.,  Nimitan,  E.  &  Stefan,  M.  (2004).  Microbiologie  aplicata.  Ed.  Technopress,  Iasi.  Commagene  Journal  of  Biology-Plant  Biology, 49- 50, 31-39
  12. Ghasemi, Y., Rasoul-Amini, S., Ebrahiminezhad, A., Zarrini, G., Kazemi, A., Kousavi-Khordisi, S., Ghoshoon, M. B., & Raee,M.J. (2010). Halotolerant amylase production by a novel bacterial strain, Rheinheimera aquimaris. Research Journal of Microbiology, 5(2), 144-149.
  13. Gupta,  R.,  Gigras,  P.,  Mohapatra,  H.,  Goswami,  V.K.,  &  Chauhan,  B.  (2003).    Microbial    a-amylases:    a    biotechnological    prospective.        Process  Biochemistry,  38,  1599-1616.  https://doi.org/10.1016/S0032-9592(03)00053-0
  14. Harley,  J.P.  (2005).  Laboratory  Exercises  in  Microbiology,  6th  ed.  Boston:  McGraw Hill Higher Education.
  15. Kathiresan, K. & Manivannan, S. (2006). Amylase production by Penicillium fellutanum isolated from mangrove rhizospheric soil. African Journal of Biotechnology, 5, 829-832. https://doi.org/10.5897/AJB
  16. Kaur,  A.,  Kaur,  M.,  Samyal,  M.  L.,  &  Ahmed,  Z.  (2012).  Isolation,  characterization, and identification of bacterial strain producing amylase. Journal of Microbiology and Biotechnology, 2(4), 573-579.
  17. Kumar, S., Suyal, D. C., Yadav, A., Shouche, Y., & Goel, R. (2019). Microbial diversity and soil physiochemical characteristic of higher altitude. PLOS One, 14(3). https://doi.org/10.1371/journal.pone.0213844.e0213844
  18. Leveque,  E.,  Janecek,  S.,  Belarbi,  A.,  &  Haye,  B.  (2000).  Thermophilic  archaeal amylolytic enzymes catalytic mechanism, substrate specificity and  stability.  Enzyme  &  Microbial  Technology,26,  3-14.  https://doi.org/10.1016/S0141-0229(99)00142-8
  19. Liu,  C.,  Li,  L.,  Xie,  J.,  Coulter,  J.  A.,  Zhang,  R.,  &  Luo,  Z.  (2020).  Soil  bacterial  diversity  and  potential  functions  are  regulated  by  long-term  conservation  tillage  and  straw  mulching.  Microorganisms, 8(6),  836.  https://doi.org/10.3390/microorganisms8060836.
  20. Mesbah,  N.  M.,  &  Wiegel,  J.  (2014).  Halophilic  alkali-  and  thermostable  amylase  from  a  novel  polyextremophilic  Amphibacillus  sp.  NM-Ra2.  International  Journal  of  Biological  Macromolecules, 70,  222–229.  https://doi.org/10.1016/j.ijbiomac.2014.06.053.
  21. Moyes, R. B., Reynolds, J., & Breakwell, D. P. (2009). Differential staining of bacteria: Gram stain. Current Protocols in Microbiology, 15(1), A-3C. https://doi.org/10.1002/9780471729259.mca03cs15
  22. Naidu, M.A., and Saranraj, P. (2013). Bacterial amylase: A review. International Journal of Pharmaceutical & Biological Archives, 4(2), 274-287.
  23. Olajuigbe, F. & Ajele, J. (2005). Production dynamics of extracellular protease from Bacillus species. African Journal of Biotechnology, 4, 776-779.
  24. Pandey,  A.,  Nigam,  P.,  Soccol,  C.R.,  Soccol,  V.T.,  Singh,  D.,  &  Mohan,  R.  (2000).  Advances  in  microbial  amylases.  Biotechnology  and  Applied  Biochemistry, 31, 135-52. https://doi.org/10.1042/ba19990073
  25. Ryan, S.M., Fitzgerald, G.F., & Van Sinderen, D. (2006). Screening for and Identification of starch-, amylopectin-, and pullulan degrading activities in bifidobacterial strains. Applied and Environmental Microbiology, 72, 5289- 5296. https://doi.org/10.1128/AEM.00257-06
  26. Saito,  N.  &  Yamamoto,  K.  (1975).  Regulatory  factors  affecting  amylase production in B. licheniformis. Journal of Bacteriology, 121, 848- 856.
  27. Senthilkumar,  P.K.,  Uma,  C.  &  Saranraj,  P.  (2012).  Amylase  Production  by Bacillus  sp.  Using  Cassava  as  Substrate.  International  Journal  of  Pharmaceutical and Biological Science Archive, 3(2), 300-306.
  28. Schmidt,  M.,  Bowers,  B.,  Varma,  A.,  Roh,  D.-H.,  &  Cabib,  E.  (2002).  In  budding yeast, contraction of the actomyosin ring and formation of the primary  septum  at  cytokinesis  depend  on  each  other.  Journal  of  Cell  Science, 115, 293–302. https://doi.org/10.1016/j.semcdb.2016.01.043
  29. Skrabanja,  V.,  Liljeberg  Elmståhl,  H.  G.,  Kreft,  I.,  &  Björck,  I.  M.  (2001).  Nutritional properties of starch in buckwheat products: Studies in vitro and in  vivo. Journal  of  Agricultural  and  Food  Chemistry, 49(1),  490-496. https://doi.org/10.1021/jf000779w
  30. Smitt, J.P., Rinzema, J., Tramper, H., Van, M., & Knol, W. (1996). Solid state fermentation  of  wheat  bran  by  Trichoderma  reesei  QMQ414. Applied Microbiology  and  Biotechnology, 46,  489-496.  https://doi.org/10.1007/s002530050849
  31. Srivastava, R.K.A. & Baruah, J.N. (1986). Culture conditions for production of  thermostable  amylase  by  Bacillus  stearothermophilus. Applied  and  Environmental   Microbiology. 52,   179-184.   https://doi.org/10.1128/aem.52.1.179-184.1986
  32. Thapa,  S.,  Li,  H.,  Ohair,  J.,  Bhatti,  S.,  Chen,  F.  C.,  &  Nasr,  K.  A.  (2019).  Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Molecular Biotechnology, 61(8), 579–601. https://doi.org/10.1007/s12033-019-00187-1.
  33. Vaseekaran,  S.,  Balakumar,  S.,  &  Arasaratnam,  V.  (2010).  Isolation  and  identification of a bacterial strain producing thermostable α- amylase. Tropical Agricultural Research, 22(1),    1  –  11.  https://doi.org/10.4038/tar.v22i1.2603
  34. Vijayalakshmi,  R.,  Sushma,  S.,  Abha,  S.,  &  Chander,  P.  (2012).  Isolation  and  Characterization  of  Bacillus  subtilis KC3 for Amylolytic Activity. International Journal of Bioscience, Biochemistry and Bioinformatics, 2 (5), 17- 20. https://doi.org/10.7763/IJBBB.2012.V2.128
  35. Wu, X., Wang, Y., Tong, B., Chen, X., & Chen, J. (2018). Purification and biochemical  characterization  of  a  thermostable  and  acid-stable  alpha-amylase  from  Bacillus  licheniformis  B4-423.  International  Journal  of  Biological  Macromolecules, 109,  329–337.  https://doi.org/10.1016/j.ijbiomac.2017.12.004.