HomeRomblon State University Research Journalvol. 5 no. 2 (2023)

In Situ Synthesis of Bare Silver Nanoparticles on Paper for Copper (II) Ion Detection

Shaira Mae D Valero | Glenn Rose M Suelan | Precious B Babar | Josie Faith N Calvo | Francis Eric P Almaquer

 

Abstract:

This study synthesized bare silver nanoparticles on paper and evaluated its response to copper (Cu (II)) ions to assess its potential as a colorimetric sensing platform. The nanoparticles were synthesized in situ on paper using silver nitrate and sodium borohydride as a precursor and reducing agent, respectively. No stabilizer or functionalizing agent was added. A two-factor three-level full factorial design with varying concentrations of reagents was employed in the synthesis process. The resulting sensor was successfully characterized using diffuse reflectance spectroscopy and scanning electron microscopy with elemental dispersive x-ray spectroscopy. The sensor was exposed to varying Cu (II) concentrations ranging from 1 to 30 mM and the developed color changes were analyzed using computer imaging software. The color changes were quantified using mean gray values from the imaging software. Based on the results, as the concentration of Cu (II) ions increased, the final mean gray value of the paper increased as well. The papers were observed to marginally lighten in color potentially due to the decrease in silver atoms or its interaction with copper. The relationship between Cu (II) concentration and the ratio of final and initial mean gray value was determined and although a weak linear relation existed from 1 to 30 mM, a positive slope supported the increase in mean gray value within the range tested. A change in the elemental composition of the paper sensor confirms lightening after its exposure to Cu (II) ions. The sensor also displayed a selective response towards the Cu (II) among other metals tested.



References:

  1. Almaquer, F.E., & Perez, J.V. (2019). Evaluation of the colorimetric performance of unmodified citrate-stabilized silver nanoparticles for copper (II) sensing in water. Key Engineering Materials, 821,372-378.  https://doi.org/10.4028/www.scientific.net/kem.821.372  
  2. AL-Thabaiti, S. A., Al-Nowaiser, F. M., Obaid, A. Y., Al-Youbi, A. O., & Khan, Z. (2008). Formation and characterization of surfactant stabilized silver nanoparticles: A kinetic study. Colloids and Surfaces B: Biointerfaces, 67(2), 230–237. https://doi.org/10.1016/j.colsurfb.2008.08.022 
  3. An. J., Luo, Q., Li, M., Wang, D., Li, X., & Yin, R. (2015). A facile synthesis of high antibacterial polymer nanocomposite containing uniformly disperse silver nanoparticles. Colloid and Polymer Science, 293(7), 1997-2008. https://doi.org/10.1007/s00396-015-3589-5  
  4. Andrade, P. F., de Faria, A. F., Oliveira, S. R., Arruda, M. A., & Goncalves, M. D. (2015). Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Research, 81, 333-342.  https://doi.org/10.1016/j.watres.2015.05.006  
  5. Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107-115 https://doi.org/10.1016/j.jtemb.2016.02.006 
  6. Budlayan, M. L., Patricio, J. N., Lagare, J. P., de la Rosa, L. B., Arco, S. D., Alguno, A. C., Austria, E. S., Manigo, J. P., & Capangpangan, R. Y. (2021). Functionalized silver nanoparticle-decorated paper sensor for rapid colorimetric detection of copper ions in water. Functional Composites and Structures, 3(3), 035007. https://doi.org/10.1088/2631-6331/ac25e9 
  7. Chaiyo, S., Siangproh, W., Apilux, A., & Chailapakul, O. (2015). Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Analytica Chimica Acta, 866, 75-83. https://doi.org/10.1016/j.aca.2015.01.042 
  8. Chen, G., Yan, L., Wan, X., Zhang, Q., & Wang, Q. (2019). In situ synthesis of silver nanoparticles on cellulose fibers using D-glucuronic acid and its antibacterial application. Materials, 12(19), 3101. https://doi.org/10.3390/ma12193101 
  9. Dankovich, T. A., & Gray, D. G. (2011). Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environmental Science & Technology, 45(5), 1992-1998. https://doi.org/10.1021/es103302t 
  10. Dankovich, T. A. (2014). Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification. Environmental Science: Nano, 1(4), 367-378. https://doi.org/10.1039/c4en00067f  
  11. Desai, V. & Kaler, S. G. (2008). Role of copper in human neurological disorders. The American Journal of Clinical Nutrition, 88(3). https://doi.org/10.1093/ajcn/88.3.855s 
  12. He, J., Kunitake, T., & Nakao, A. (2003). Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chemistry of Materials, 15(23), 4401-477 4406. https://doi.org/10.1021/cm034720r 
  13. Helaluddin, A. B. M., Khalid, R. S., Alaama, M., & Abbas, S. A. (2016). Main analytical techniques used for elemental analysis in various matrices. Tropical Journal of Pharmaceutical Research, 15(2), 427-434. https://doi.org/10.4314/tjpr.v15i2.29
  14. Khodashenas, B., & Ghorbani, H. (2014). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, 12(8), 1823–1838.  https://doi.org/10.1016/j.arabjc.2014.12.014 
  15. Kirubaharan, C. J., Kalpana, D., Lee, Y. S., Kim, A. R., Yoo, D. J., Nahm, K. S., & Kumar, G. G. (2012). Biomediated silver nanoparticles for the highly selective copper (II) ion sensor applications. Industrial & Engineering Chemistry Research, 51(21), 7441-7446. https://doi.org/10.1021/ie3003232
  16. Liang, M., Zhang, G., Feng, Y., Li, R., Hou, P., Zhang, J., & Wang, J. (2017). Facile synthesis of silver nanoparticles on amino-modified cellulose paper and their catalytic properties. Journal of Materials Science, 53, 1568–1579. https://doi.org/10.1007/s10853-017-1610-8 
  17. Li, Z., Wang, Y., & Yu, Q. (2009). Significant parameters in the optimization of synthesis of silver nanoparticles by Chemical Reduction Method. Journal of Materials Engineering and Performance, 19, 252–256.  https://doi.org/10.1007/s11665-009-9486-7 
  18. Ma, Y.-rong., Niu, H.-yun., Zhang, X.-le., & Cai, Y.-qi. (2011). Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chemical Communication, 47(47), 12643. https://doi.org/10.1039/c1cc15048k 
  19. Mulfinger, L., Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., & Bortiz, C. (2007). Synthesis and study of silver nanoparticles. Journal of Chemical Education, 84(2), 322. https://doi.org/10.1021/ed084p322 
  20. Nery, E. W., & Kubota, L. T. (2013). Sensing approaches on paper-based devices: A Review. Analytical and Bioanalytical Chemistry, 405, 7573-7595. https://doi.org/10.1007/s00216-013-6911-4 
  21. Pourreza, N., & Golmohammadi, H. (2014). Colorimetric sensing of copper based on its suppressive effect on Cloud Point extraction of label Free Silver Nanoparticles. Analytical Methods, 6(7), 2150-2156. https://doi.org/10.1039/c3ay42149j 
  22. Ratnarathorn, N., Chailapakul, O., Henry, C. S., & Dungchai, W. (2012). Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta, 99, 552-557. https://doi.org/10.1016/j.talanta.2012.06.033 
  23. Swensson, B., Ek, M., & Gray, D. G. (2018). In situ preparation of silver nanoparticles in paper by reduction with Alkaline Glucose Solutions. ACS Omega, 3(8), 9449-9452. https://doi.org/10.1021/acsomega.8b01199 
  24. Vilela, D., Gonzalez, M. C., & Escarpa, A. (2012). Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Analytica Chimica Acta, 751, 24-43.  https://doi.org/10.1016/j.aca.2012.08.043 
  25. Wang, D., An, J., Luo, Q., Li, X., & Li, M. (2008). A convenient approach to synthesize stable silver nanoparticles and silver/polysterene nanocomposite particles. Journal of Applied Polymer Science, 110(5), 3038-3046. https://doi.org/10.1002/app.28442