HomeJournal of Interdisciplinary Perspectivesvol. 3 no. 1 (2025)

Examining How Candidate Attributes Shape Gen Z Perceptions for the 2025 Philippine Senate Elections using Conjoint Analysis

Emmanuel Joseph B. Sumatra

Discipline: Politics

 

Abstract:

Understanding Generation Z's political preferences is essential for candidates who engage this influential demographic in the 2025 Philippine Senate elections. Despite the growing importance of Gen Z in the electorate, limited research exists on the specific candidate attributes that shape their voting decisions. This study, conducted in Davao City, addresses this gap by examining how Gen Z perceives various candidate attributes through the lens of Multi-Attribute Utility Theory (MAUT) and Rational Choice Theory (RCT). Using conjoint analysis with the PAPRIKA method, the study evaluated the relative importance of six key attributes: political experience, educational background, stance on issues, party affiliation, campaign style, and age group. Data from 1,380 respondents were analyzed to ensure a robust representation of Gen Z preferences. Results reveal that political experience (31.0%) and educational background (18.1%) are the most influential factors, followed by stance on issues (17.2%) and party affiliation (15.8%), with campaign-style (10.8%) and age group (7.2%) being less significant. Gen Z voters in this study preferred candidates with substantial experience, advanced academic credentials, and a progressive stance on social and environmental issues, favoring digital over traditional campaign strategies. These findings have theoretical and practical implications, enriching the understanding of Gen Z's decision-making processes and highlighting their prioritization of competence, authenticity, and modern communication. Politicians can use these insights to develop targeted campaign strategies that resonate with Gen Z values, emphasizing progressive policies, qualifications, and digital engagement. By aligning campaign approaches with Gen Z's expectations, candidates have a strategic opportunity to connect meaningfully with this emerging voting bloc in the Philippine political landscape.



References:

  1. Aldisa, R. T., Sanwani, S., Simanjuntak, D. M., Laia, S., & Mesran, M. (2022). Penerapan metode multy attribute utility theory (MAUT) dalam pemilihan asisten laboratorium komputer. Jurnal Media Informatika Budidarma. https://doi.org/10.30865/mib.v6i3.4171
  2. Anabo, F. D. (2021). What matters most to student voters?: A conjoint analysis of political candidate attributes. Philippine Social Science Journal. https://doi.org/10.52006/main.v4i2.355
  3. Balogun, I., Garner, E., Amer, P., Fennessy, P., Teeken, B., Olaosebikan, O., Abolore, B., Madu, T., Okoye, B., Santos, B., Byrne, T., Martin‐Collado, D., Egesi, C. N., Kulakow, P., & Tufan, H. A. (2021). From traits to typologies: Piloting new approaches to profiling trait preferences along the cassava value chain in Nigeria. Crop Science. https://doi.org/10.1002/csc2.20680
  4. Bansak, K., Hainmueller, J., Hopkins, D. J., & Yamamoto, T. (2020). Using conjoint experiments to analyze elections: The essential role of the average marginal component effect (AMCE). SSRN. https://doi.org/10.2139/SSRN.3588941
  5. Bansak, K., Hainmueller, J., Hopkins, D. J., & Yamamoto, T. (2021). Conjoint survey experiments. SSRN. https://doi.org/10.1017/9781108777919.004
  6. Batara, E. B., Labadan, A. K., & Roa, M. C. (2021). Factors affecting youth voting preferences in the Philippine senatorial election: A structural equation modelling (SEM) analysis. Jurnal Studi Pemerintahan. https://doi.org/10.18196/jgp.123137
  7. Becker, G. S. (1976). The economic approach to human behavior. University of Chicago Press.
  8. Burger, A., & Silima, T. (2006). Sampling and sampling design. Encyclopedia of Biopharmaceutical Statistics. https://doi.org/10.1002/352760216x.ch
  9. Canares, X. J., Estipular, L. L., Protacio, T. M., Ramos, B. D., Kurata, Y. B., & Ngo, J. K. (2022). Factors affecting perceived decision making among Filipinos in national elections: An integration of theory of planned behavior and behavioral decision theory. Proceedings of the 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 0194-0199. https://doi.org/10.1109/IEEM55944.2022.9990002
  10. Castillo, R., & Yee, J. E. C. (2023). Preferences of accountancy graduating students of a CPA review center. Business and Finance Journal. https://doi.org/10.33086/bfj.v8i1.3912
  11. Castro, M. M., Pabuayon, I. M., Catelo, S. P., & Camacho, J. V. (2021). Analyzing consumer preferences for credence attributes of fish and fishery products in Davao City, Philippines. Asian Journal of Agriculture and Development, 18(1), 84-103. https://doi.org/10.37801/AJAD2021.18.1.6
  12. Department, L. R. (2018). Conjoint analysis tools for developing country contexts.
  13. Dewi, E. A. S., Arifin, H. S., & Fuadi, I. (2023). Nurturing political engagement: Political communication strategies for generation Z in the lead-up to the 2024 election in West Java. The Journal of Society and Media, 7(2), 370–388. https://doi.org/10.26740/jsm.v7n2.p370-388
  14. Dyer, J. S. (2016). Multiattribute utility theory (MAUT). Operations Research and Management Science, 233, 285-314. https://doi.org/10.1007/978-1-4939-3094-4_8
  15. Ebro, E. D. (2021). Political attributes of millennials in a state university in Zambales, Philippines. International Journal of Multidisciplinary: Applied Business and Education Research. https://doi.org/10.11594/ijmaber.02.08.04
  16. Franchino, F., & Zucchini, F. (2013). Conjoint analysis of voting behaviour: A stated preference experiment employing valence and ideology attributes of candidates.
  17. Garai-Fodor, M. (2021). Food consumption patterns, in a values-based approach, for generation Z. Acta Polytechnica Hungarica. https://doi.org/10.12700/aph.18.11.2021.11.7
  18. Hainmueller, J., Hopkins, D. J., & Yamamoto, T. (2013). Causal inference in conjoint analysis: Understanding multidimensional choices via stated preference experiments. Political Analysis, 22, 1-30. https://doi.org/10.1093/pan/mpt024
  19. Hansen, P., & Ombler, F. (2008). A new method for scoring additive multi‐attribute value models using pairwise rankings of alternatives. Journal of Multi-Criteria Decision Analysis, 15, 87-107. https://doi.org/10.1002/MCDA.428
  20. Haşim İNAL, İ. (2023). Z kuşağının sosyal medyanın siyasi etkisine yönelik algısının sosyal medyanın oy verme davranışı üzerindeki etkisine yönelik algısına etkisi ve sosyal medyada siyasi iletişim davranışının aracılık rolü. International Journal of Social Humanities Sciences Research (JSHSR). https://doi.org/10.26450/jshsr.3505
  21. Hauber, A. B., González, J. M., Groothuis-Oudshoorn, C. G., Prior, T. J., Marshall, D. A., Cunningham, C. E., IJzerman, M. J., & Bridges, J. F. (2016). Statistical methods for the analysis of discrete choice experiments: A report of the ISPOR conjoint analysis good research practices task force. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research, 19(4), 300-15. https://doi.org/10.1016/j.jval.2016.04.004
  22. Horiuchi, Y., Smith, D., & Yamamoto, T. (2016). Identifying multidimensional policy preferences of voters in representative democracies: A conjoint field experiment in Japan. Social Science Research Network. https://doi.org/10.2139/SSRN.2627907
  23. Horiuchi, Y., Smith, D., & Yamamoto, T. (2017). Measuring voters’ multidimensional policy preferences with conjoint analysis: Application to Japan’s 2014 election. Political Analysis, 26, 190-209. https://doi.org/10.1017/pan.2018.2
  24. Horiuchi, Y., Smith, D., & Yamamoto, T. (2018). Identifying voter preferences for politicians' personal attributes: A conjoint experiment in Japan. PSN: Legislative Elections (Topic). https://doi.org/10.2139/ssrn.2827969
  25. Jabar, M. A., Chiong-Javier, E., & Pradubmook Sherer, P. (2024). Qualitative ethical technology assessment of artificial intelligence (AI) and the internet of things (IoT) among Filipino Gen Z members: Implications for ethics education in higher learning institutions. Asia Pacific Journal of Education. https://doi.org/10.1080/02188791.2024.2303048
  26. Joseph, P. (2023). ‘It’s all public anyway’: A collaborative navigation of anonymity and informed consent in a study with identifiable parent carers. Ethics and Social Welfare, 17, 191-205. https://doi.org/10.1080/17496535.2023.2206671
  27. Kaikara, C. (2024). Innovative marketing strategies for attracting millennial and Gen Z travelers. Journal of Modern Hospitality. https://doi.org/10.47941/jmh.1953
  28. Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge University Press.
  29. Khan, A. N. (2023). Elucidating the effects of environmental consciousness and environmental attitude on green travel behavior: Moderating role of green self‐efficacy. Sustainable Development. https://doi.org/10.1002/sd.2771
  30. Lunsford, T. R., & Lunsford, B. R. (1995). The research sample, part I: Sampling. JPO Journal of Prosthetics and Orthotics, 7, 17A. https://doi.org/10.1097/00008526-199500730-00008
  31. Moslem, S., Ghorbanzadeh, O., Blaschke, T., & Duleba, S. (2019). Analysing stakeholder consensus for a sustainable transport development decision by the fuzzy AHP and interval AHP. Sustainability, 11(12), 3271. https://doi.org/10.3390/su11123271
  32. Murcia, J. V., & Bolo, R. (2017). Millennial voters’ preference for the 2016 Philippine presidential elections: A simulation using conjoint analysis. SSRN. https://doi.org/10.2139/SSRN.2983023
  33. Nebeker, C., Leavy, V., Roitmann, E., & Steinhubl, S. S. (2020). Ethical considerations when creating evidence from real world digital health data. medRxiv. https://doi.org/10.1101/2020.01.16.20017806
  34. Nii Laryeafio, M., & Ogbewe, O. C. (2023). Ethical consideration dilemma: Systematic review of ethics in qualitative data collection through interviews. Journal of Ethics in Entrepreneurship and Technology. https://doi.org/10.1108/jeet-09-2022-0014
  35. Oliver, P. (2003). The student’s guide to research ethics. Open University Press.
  36. Orzal, L. B., Toring, L. A., Coton, M. A., Lucenecio, D. M., Nunez, R. M., Bordon, K., Delan, D. J., & Almazan, M. C. (2023). Understanding voters' preference for candidates in the Philippine presidential elections. Cognizance Journal of Multidisciplinary Studies. https://doi.org/10.47760/cognizance.2023.v03i10.009
  37. Orte, C. J., & Diño, M. J. (2019). Eliciting e-leadership style and trait preference among nurses via conjoint analysis. Enfermería Clínica, 29(Suppl 1), 78-80. https://doi.org/10.1016/j.enfcli.2018.11.025
  38. Persada, S. F., Miraja, B. A., & Nadlifatin, R. (2019). Understanding the generation Z behavior on d-learning: A unified theory of acceptance and use of technology (UTAUT) approach. International Journal of Emerging Technologies in Learning, 14, 20-33. https://doi.org/10.3991/IJET.V14I05.9993
  39. Pomante, M. J., & Schraufnagel, S. (2015). Candidate age and youth voter turnout. American Politics Research, 43, 479-503. https://doi.org/10.1177/1532673X14554829
  40. Prion, S., & Haerling, K. A. (2014). Making sense of methods and measurement: Spearman-rho ranked-order correlation coefficient. Clinical Simulation in Nursing, 10(10), 535-536.
  41. Putra, T., Wahyuni, R. T., Meilani, N., Anjani, M., & Sari, D. K. (2024). Partisipasi politik Gen Z: Eksplorasi peran media sosial dalam pembentukan kesadaran politik remaja. Jurnal Pendidikan Kewarganegaraan dan Politik. https://doi.org/10.61476/bpkxy103 
  42. Santos, A. R., Prasetyo, Y. T., Persada, S. F., & Nadlifatin, R. (2022). Filipinos’ preference on delivery of credible news information on social media: A conjoint analysis approach. Proceedings of the 8th International Conference on Industrial and Business Engineering. https://doi.org/10.1145/3568834.3568901
  43. Setiawan, H. D., & Djafar, T. M. (2023). Partisipasi politik pemilih muda dalam pelaksanaan demokrasi di pemilu 2024. Populis: Jurnal Sosial dan Humaniora. https://doi.org/10.47313/pjsh.v8i2.2877
  44. Sitanggang, P. B., Ancok, D., Kuncoroyakti, Y. A., & Lubis, A. Y. (2024). The relationship between political image and voting behavior in first-time voters: Demographics of generation Z voters in the 2024 election in Indonesia. International Journal of Social Science and Education Research Studies. https://doi.org/10.55677/ijssers/v04i6y2024-01
  45. Sumatra, E. J. (2023). A conjoint analysis of cooperative savings product preferences among generation Z college students in Davao City. Journal of Interdisciplinary Socio-Economic and Community Study. https://doi.org/10.21776/jiscos.03.2.03
  46. Swedan, S. F., Khabour, O. F., Alzoubi, K. H., & Aljabali, A. A. (2020). Graduate students reported practices regarding the issue of informed consent and maintaining of data confidentiality in a developing country. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e04940
  47. Timoteo Jr., E. N. (2021). Millennial votes in the 2019 Philippine national election: A quantitative approach. Applied Quantitative Analysis. https://doi.org/10.31098/quant.558
  48. Vira, A., Sumantri, P., & Azis, A. (2024). Peranan tokoh intelektual muda dalam perkembangan politik di Indonesia pada era digital. Polyscopia. https://doi.org/10.57251/polyscopia.v1i1.1235
  49. Yandug, J. S., Ponce, F. D., & Ong, A. K. (2023). Application of conjoint analysis and 5Ps marketing mix in identifying customer preference of alcohol consumption among youths in the Philippines. Foods, 12. https://doi.org/10.3390/foods12071401
  50. Zickar, M. J., & Keith, M. G. (2022). Innovations in sampling: Improving the appropriateness and quality of samples in organizational research. Annual Review of Organizational Psychology and Organizational Behavior. https://doi.org/10.1146/annurev-orgpsych-120920-052946