HomePhilippine Scientific Journalvol. 55 no. 2 (2022)

Risk Factors for Antibiotic Resistance to Common Bacterial Isolates among Adult Patients with Bacterial Pneumonia Admitted at MCU-FDTMF Hospital

Carolina Caryl J Javiniar | Lalaine L Mortera

Discipline: Medical Sciences

 

Abstract:

Antibiotic resistance is prevalent among the bacterial pathogens causing pneumonia. In this cross-sectional study, the risk factors for antibiotic resistance to common bacterial isolates among 75 adult patients with bacterial pneumonia were evaluated. The prevalence of antibiotic resistance in the study population was 72%. Age (P=0.665), gender (P=0.585), current immunosuppression (P=0.780), and comorbid conditions (P=0.654) are not statistically associated with antibiotic resistance. Klebsiella pneumoniae (46.67%) was the most common pathogen isolated in sputum samples of patients with pneumonia followed by Pseudomonas aeruginosa (14.67%). The most common antibiotic analyzed for antimicrobial susceptibility was ciprofloxacin (82.67%) followed by cotrimoxazole (77.33%). Among these antibiotics, the antibiotic resistance was highest in ampicillin (90.91%) followed by oxacillin (80.00%). The odds ratio of antibiotic resistance in terms of gender (female); current immunosuppression; acute coronary syndrome; atrial fibrillation; bronchial asthma; cerebrovascular disease; chronic kidney disease; COPD; heart failure; diabetes mellitus; hypertensive atherosclerotic; cardiovascular disease; liver cirrhosis were as follows: 5.84 (95% CI: 0.08 - 402.06); 3.89 (95% CI: 0.04 - 358.95); 1.12 (95% CI: 0.01 - 178.3); 4.98 (95% CI: 0.05 - 543.84); 3.42 (95% CI: 0.04 - 294.15); 5.8 (95% CI: 0.01 - 2,680.41); 1.93 (95% CI: 0.01 - 329.64); 7.43 (95% CI: 0.08 - 720.97); 6.25 (95% CI: 0.06 - 636.52); 1.71 (95% CI: 0.02 - 41.31); 8.62 (95% CI: 0.12 - 613.56); 5.81 (95% CI: 0.01-2,688.45); and 6.26 (95% CI: 0.06 - 637.23) respectively. Resistant pathogens require a different antibiotic treatment, and identification of specific risk factors could help to identify these microbial etiologies.



References:

  1. Pogue JM, Alaniz  C, Carver PL,  Pleva  M, Newton D, DePestel DD.  Role of unitspecific combination antibiograms for improving the selection of appropriate empiric therapy for gram-negative pneumonia. Infect Control Hosp Epidemiol. 2011;32(3):289-92. doi: 10.1086/658665.
  2. Hebert C, Ridgway J, Vekhter B, Brown EC, Weber SG, Robicsek A. Demonstration of the weighted-incidence syndromic combination antibiogram: an empiric prescribing decision aid. Infect Control Hosp Epidemiol. 2012 Apr;33(4):381-8. doi: 10.1086/664768.
  3. Dean E. Schraufnagel, MD. Breathing in  America: Disease, Prgoress, and Hope. Chapter 15. 2010. Available from: https://www.thoracic.org/patients/patientresources/breathing-in-america/
  4. Broulette J, Yu H, Pyenson B, Iwasaki K,  Sato R. The incidence rate and economic burden of community-acquired pneumonia in a working-age population.Am Health Drug Benefits 2013-Oct;6(8):494-503. PubMed PMID: 24991378; PubMed Central PMCID: PMC4031734
  5. Lodato, Emma. (2013).  Priority Medicines for  Europe  and  the World  "A  Public Health Approach to Innovation" Update on the 2004 Background Paper.
  6. Simoes EAF, Cherian T, Chow J, et al. Acute Respiratory  Infections  in Children editors. In:  Jamison  DT,  Breman  JG,   Measham  AR,  et  al.,   Disease  Control   Priorities  in Developing Countries. 2nd  edition. Washington (DC):The International Bank for Reconstruction and Development / The World Bank; 2006. Chapter 25.Available from: https://www.ncbi.nlm.nih.gov/books/NBK11786/Copublished by Oxford University Press, New York.
  7. Kasper, D. L., Fauci, A. S., Hauser, S. L.,        Longo, D. L. 1., Jameson, J. L., &      Loscalzo, J. (2015). Harrison's principles of      internal medicine (19th edition.). New York:   McGraw Hill Education.
  8. Gupta D, Agarwal R, Aggarwal  AN, Singh  N,   Mishra N, Khilnani GC, Samaria JK, Gaur SN,  Jindal  SK;   Pneumonia  Guidelines  Working  Group.  Guidelines for  diagnosis  and management community- and hospital-acquired pneumonia in adults: Joint ICS/NCCP(I) recommendations.     Lung India.   2012  Jul-Sep;29 (Suppl 2): S27-62. doi:  10.4103/0970-2113.99248.    PubMed   PMID:  23019384;   PubMed   Central    PMCID:    PMC3458782.
  9. Sharon Erdman, PharmD. SIDP      –     Antimicrobial  Stewardship  Certificate   Program,      Understanding  the   Hospital  Antibiogram.  Available  from:  http://s3.proce.com/res/pdf/handouts/ErdmanHandout.pdf
  10. World Health Organization (2020). Antibiotic resistance. (as  cited  from https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance) accessed on June 25, 2022
  11. Hossain, A., Hossain, S. A.,  Fatema, A. N.,  Wahab,  A.,  Alam, M.  M.,    Islam,   M.  N., Hossain, M. Z., & Ahsan,  G. U.  (2020).  Age   and  gender-specific antibiotic  resistance  patterns among Bangladeshi patients with urinary  tract  infection  caused  by  Escherichicoli.    Heliyon, 6(6),  e04161.  ttps://doi.org/10.1016/j.heliyon.2020.e04161,
  12. Huo, W.,   Busch,     L.M.,    Hernandez-Bird,  J.  et al.     Immunosuppression   broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nat Microbiol 7, 796–809 (2022). https://doi.org/10.1038/s41564-022-01126-8
  13. Zeshan   B,   Karobari   MI,   Afzal   N,   Siddiq  A,  Basha  S,  Basheer  SN,  Peeran  SW,Mustafa M, Daud  NHA,  Ahmed N, Yean  CY,  Noorani  TY.  The Usage of Antibiotics by COVID-19  Patients with   Comorbidities:   The   Risk  of   Increased  Antimicrobial Resistance. Antibiotics  (Basel). 2021 Dec 29;11(1):35.  doi:  10.3390/antibiotics11010035. PMID: 35052912; PMCID: PMC8772884.
  14. Nirwati  H,  Sinanjung  K,  Fahrunissa F, et al.   Biofilm  formation  and  antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019;13(Suppl 11):20. Published 2019 Dec 16. doi:10.1186/s12919-  019-0176-7
  15. Wang  C, Yuan Z, Huang W, Yan L, Tang J,  Liu CW.  Epidemiologic  analysis  and control  Strategy  of  Klebsiella  pneumoniae  infection in intensive care units in  a  teaching hospital of People's Republic of China. Infect Drug Resist. 2019;12:391– 398. doi:10.2147/IDR.S189154.
  16. Pang  Z, Raudonis R,  Glick BR,  Lin TJ,  Cheng Z.  Antibiotic  resistance  in  Pseudomonas aeruginosa:  mechanisms  and alternative therapeutic strategies.    Biotechnol        Adv.     2019 Jan-  Feb;37(1):177-192.           doi: 10.1016/j.biotechadv.2018.11.013. Epub  2018 Nov 27. PMID: 30500353.
  17. Ash, Ronald J et al. “Antibiotic resistance of gram-negative bacteria in rivers, United States.”Emerging infectious diseases vol. 8,7 (2002): 713-6.  doi:10.3201/eid0807.010264
  18. Li M,  Liu Q,  Teng Y, et al.   The  resistance   mechanism   of   Escherichia  coli  induced  by ampicillin in laboratory. Infect Drug Resist. 2019;12:2853-2863. Published 2019 Sep 11. doi:10.2147/IDR.S221212
  19. Yelin I, Snitser O, Novich G, et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med. 2019;25(7):1143-1152.  doi:10.1038/s41591-019-0503-6
  20. Prina E, Ranzani OT, Polverino E, Cillóniz  C, Ferrer M, Fernandez L, Puig de la Bellacasa J, Menéndez R, Mensa J, Torres A. Risk factors associated with potentially antibiotic-resistant pathogens in community- acquired pneumonia. Ann  Am Thorac Soc. 2015 Feb;12(2):153-60. doi: 10.1513/AnnalsATS.201407-305OC. PMID: 25521229.