HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 2 (2025)

A Segmentation Analysis Utilizing Natural Language Processing Model with Interactive Data Analytics Dashboard for Research Management Platform

Raquel C Adriano | Anthony U. Concepcion | Marian Minneli S. Cruz | Alaina Thea V. Concepcion

Discipline: Development Studies

 

Abstract:

Research is a vital component of a university and, currently, unstructured big data is a significant issue in various ICT industries and institutions. To solve this modern problem, the researchers developed a system to streamline the manual operations and traditional research management system of the university through Natural Language Pro-cessing (NPL). This quantitative research utilizing descriptive-devel-opmental design is about designing and evaluating A Segmentation Analysis Utilizing Natural Language Processing Model with Interac-tive Data Analytics Dashboard for Bulacan State University Research Management Platform utilizes the framework of progressive proto-typing in the development process. Consultative meetings, interviews and the use of survey questionnaires were held to obtain data from ten (10) RDO/CDRU and staff, twenty (20) IT experts and twenty (20) academicians were chosen using random sampling. Results show that personalize learning management system is excellent in terms of functional suitability (M=4.66), performance efficiency (M=4.68), compatibility (M=4.67), usability (M=4.74), reliability (M=4.51), secu-rity (M=4.44), maintainability (M=4.72), and portability (M=4.65). Subsequently, the developed system recorded a grand mean of 4.63 interpreted as Excellent among all ISO/IEC 25010 criteria. This indicates that the system complies with end-user needs as well as software quality standards. It is therefore prepared for adoption. Along with its implementation, it is recommended to gather feedback regu-larly and conduct an impact analysis of the effectiveness of using the segmentation analysis utilizing natural language processing model with interactive data analytics dashboard for research management platform.



References:

  1. Boston University. (n.d.). Research Information Management   System   (RIMS).Retrieved from https://www.bu.edu/tech/ser-vices/admin/research-systems/rims/
  2. Bowdre, P. R. (2020). The use of predictive an-alytics to shift the culture of academic ad-vising  toward  a  focus  on  student  success. Journal of Educational and Social Research, 7(3),45–55. Retrieved from https://jespnet.com/jour-nals/Vol_7_No_3_September_2020/3.pdf
  3. Budi, S., Gata, W., Noor, M., Pangabean, S., & Ra-hayu,  C.  S.  (2022).  News  portal  website measurement    analysis    using    ISO/IEC 25010 and McCall methods. Journal of Ap-plied  Engineering  and  Technological  Sci-ence (JAETS), 4(1),273–285.
  4. Demmelmaier,   G.,   &   Westerberg,   C.   (2021). Data segmentation using NLP: Gender and age.Retrieved   from https://www.diva-por-tal.org/smash/get/diva2:1527530/FULLTEXT01.pdf
  5. Dhingra,  P.,  Gayathri,  N.,  Rakesh  Kumar,  S., Singanamalla, V., Ramesh, C., & Balamuru-gan,  B.  (2020).  Internet  of  Things–based pharmaceutics  data  analysis. Emergence of  Pharmaceutical  Industry  Growth  with Industrial IoT Approach,85–131. https://doi.org/10.1016/b978-0-12-819593-2.00004-2
  6. Elia, G., Polimeno, G., Solazzo, G., & Passiante, G. (2020). A multi-dimension framework for value creation through big data. Industrial Marketing Management, 90,617–632.Elsevier. (n.d.). Why you need a Research Infor-mation  Management  System  (RIMS).Re-trieved from https://beta.else-vier.com/academic-and-govern-ment/why-you-need-cris?trial=true
  7. Fire,  M.,  &  Guestrin,  C.  (2019).  Over-optimiza-tion  of  academic  publishing  metrics:  Ob-serving Goodhart's Law in action. GigaSci-ence,  8.https://doi.org/10.1093/gigasci-ence/giz053
  8. Gao, H., Xu, Y., Yin, Y., Zhang, W., Li, R., & Wang, X.  (2019).  Context-aware  QoS  prediction with  neural  collaborative  filtering  for  In-ternet-of-Things services. IEEE Internet of Things Journal,1–1. https://doi.org/10.1109/jiot.2019.2956827
  9. Johnson,  R.,  Watkinson,  A.,  &  Mabe,  M.  (2018). The  STM  Report,  5th  edition:  An  overview of scientific and scholarly  publishing.STM. Retrieved    February    11,    2025,    from https://coil-ink.org/20.500.12592/7qcc41
  10. Joshi,  A.,  &  Unger,  K.  (2017). Introduction  to data   visualization   and   visualizing   your data effectively.Retrieved from https://www2.cs.uh.edu/~ceick/UDM/COSC3337-DV1.pdf
  11. Kelly,  S.  (2018).  The  continuing  evolution  of publishing in the biological sciences. Biol-ogy Open, 7(8).https://doi.org/10.1242/bio.037325
  12. Li, J., Chiu, B., Shang, S., & Shao, L. (2020). Neu-ral  text  segmentation  and  its  application to  sentiment  analysis. IEEE  Transactions on    Knowledge    and    Data    Engineering, 34(2),828–842.
  13. Li, J., Sun, A., & Joty, S. R. (2018, July). SegBot: A generic  neural  text  segmentation  model with  pointer  network. Proceedings  of  the 27th  International  Joint  Conference on  Ar-tificial Intelligence,4166–4172. https://doi.org/10.5555/3304222.3304349
  14. Love,  DeMonner,  &  Teasley.  (2021). Show  stu-dents their data: Using dashboards to sup-port    self-regulated    learning.Retrieved from https://er.educause.edu/arti-cles/2021/7/show-students-their-data-using-dashboards-to-support-self-regu-lated-learning
  15. Lukasik,  M.,  Dadachev,  B.,  Simoes,  G.,  &  Pap-ineni,  K.  (2020).  Text  segmentation  by cross-segment   attention. arXiv   preprint arXiv:2004.14535.
  16. Nistor, N., & Hernández-García, Á. (2018). What types  of  data  are  used  in  learning  analyt-ics? An overview of six cases. Computers in Human Behavior, 89,335–338.
  17. Olivetti, E.  A.,  Cole,  J.  M.,  Kim,  E.,  Kononova,  O., Ceder, G.,  Han, T. Y. J., &  Hiszpanski,  A.  M. (2020).   Data-driven   materials   research enabled  by  natural  language  processing and  information  extraction. Applied  Phys-ics Reviews, 7(4),041317.
  18. Shtekh,   G.,   Kazakova,   P.,   Nikitinsky,   N.,   & Skachkov,  N.  (2018,  October).  Applying topic  segmentation  to  document-level  in-formation   retrieval. Proceedings   of   the 14th  Central  and  Eastern  European  Soft-ware Engineering Conference Russia,1–6.
  19. Tyagi, A. (2021). A review study of natural lan-guage processing techniques for text min-ing. International  Journal  of  Engineering Research & Technology,10(9). https://doi.org/10.17577/IJERTV10IS090156University  of  Waterloo.  (n.d.). Data  visualiza-tion.Retrieved    from https://uwater-loo.ca/centre-for-teaching-excel-lence/catalogs/tip-sheets/data-visualiza-tion
  20. Wang, D., Su, J., & Yu, H. (2020). Feature extrac-tion and analysis of natural language pro-cessing   for   deep   learning   English   lan-guage. IEEE Access, 8,46335–46345.
  21. Whitehead, D. (2019). Re: What is the standard number of publications per year (especially journal   papers)   for   a   researcher?Re-trieved from https://www.re-searchgate.net/post/What-is-the-stand-ard-number-of-publications-per-year-specially-journal-papers-for-a-re-searcher/5c42b0bcc7d8ab077805162a/citation/download
  22. Wright, A., & Wiklicky, H. (2019). Comparison of syntactic  and  semantic  representations  of programs in neural embeddings.Retrieved from https://arxiv.org/pdf/2001.09201.pdf