Premna odorata Blanco against Ascaris spp. Ova Found in Dewormed Swines of Tanauan, Philippines
Rodmie Oliver E. Pumaras | Shanica Mycah Gozon | Baniaga Osama | Francesca Nicole Mosquera | Marialo Clarez Pisarro | Kezia Arielle Rodrin | Allyssa Loraine Sambrano
Discipline: biology (non-specific)
Abstract:
This study investigated the effectiveness of Premna odorata Blanco (Alagao) aqueous leaf extract against swine Ascaris spp. ova. Ascaris is a common intestinal parasite in the Philippines, affecting animals and humans. Recent studies have highlighted the increasing antiparasitic resistance among parasites, which has led to the exploration of alternative conventional options and therapeutics to combat parasitic infections effectively. This growing resistance underscores the need for novel treatments, such as plant-based extracts, to address the limitations of current anthelmintic drugs. Researchers aimed to assess the ovicidal activity of the aqueous leaf extract. The study involved collecting Premna odorata Blanco (Alagao) leaves from Cavite City, verifying the plant identity, and preparing various extract concentrations. Swine fecal samples were collected in Tanauan City, Batangas, and examined for Ascaris spp. prevalence and intensity using Modified Kato-Katz. Results showed a moderate infection rate; 15 out of 90 pigs tested positive. Farms 1 and 6 had light infections, suggesting partial effectiveness of previous deworming. Farm 5 showed a high infection even after recent deworming. The Premna odorata Blanco (Alagao) aqueous leaf extract exhibited low efficiency against Ascaris spp. ova, with 15 to 45 minutes exposure times. However, extended exposures of 60 to 120 minutes showed promising results. The 25% extract concentration was ineffective, while 50% and 75% concentrations partially disrupted the eggs. Notably, the 100% concentration successfully penetrated and disrupted the ova. These findings suggested that higher concentrations of Premna odorata Blanco (Alagao) aqueous leaf extract have a better ovicidal effect against Ascaris spp.; however, it requires prolonged exposure. Further research is needed to optimize the extract's use as a potential alternative anthelmintic drug.
References:
- Ackley, C., Elsheikh, M., & Zaman, S. (2021). Scoping review of Neglected Tropical Disease Interventions and Health Promotion: A framework for successful NTD interventions as evidenced by the literature. PLoS Neglected Tropical Diseases, 15(7), e0009278. https://doi.org/10.1371/journal.pntd.0009278
- Belizario, V., Delos Trinos, J. P. C. R., Sison, O., Miranda, E., Molina, V., Cuayzon, A., Isiderio, M. E., & Delgado, R. (2021). High burden of soil-transmitted helminth infections, schistosomiasis, undernutrition, and poor sanitation in two Typhoon Haiyan-stricken provinces in Eastern Philippines. Pathogens and Global Health, 115(6), 412–422. https://doi.org/10.1080/20477724.2021.1920777
- Cabardo, D.E., & Portugaliza, H.P. (2017). Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. International Journal of Veterinary Sciences and Medicine, 5(1), 30–34. https://doi:10.1016/j.ijvsm.2017.02.001
- Campbell, S., & Faulkner, K. (2023). Anthelmintic drugs. Florida, United States: StatPearls Publishing. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK544251/
- Elmaidomy, A. H., Mohammed, R., M. Hassan, H., I. Owis, A., E. Rateb, M., A. Khanfar, M., Krischke, M., J. Mueller, M., & Ramadan Abdelmohsen, U. (2019). Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from premna odorata blanco. Metabolites, 9(10), 223. https://doi.org/10.3390/metabo9100223
- Eyayu, T., Yimer, G., Workineh, L., Tiruneh, T., Sema, M., Legese, B., Almaw, A., Solomon, Y., Malkamu, B., Chanie, E. S., Feleke, D. G., Jimma, M. S., Hassen, S., & Tesfaw, A. (2022). Prevalence,
- intensity of infection and associated risk factors of soil-transmitted helminth infections among school children at Tachgayint woreda, Northcentral Ethiopia. PLOS ONE, 17(4), e0266333. https://doi.org/10.1371/journal.pone.0266333
- Garcia, M. M. ., Antao, M. L. M., Gotera, C. L. M., Hermoso, P. J. P., Samblaceño, R. V., Valencia, R. D., Budias, M. G. C., Teodoro, F. V., Olayvar, N. F., Villegas, J. P., & Nemenzo, P. S. (2022). Anti-microbial Properties of Selected Plant Leaf Extracts Against Aspergillus Niger (van Tieghem), Pseudomonas Aeruginosa (Schroeter) and Staphylococcus Aureus (Rosenbach). CMU Journal of Science, 25(2), 48-58. https://doi.org/10.52751/cnfq9322
- Husori, D. I., Bancin, D. Y., Bahri, S., Asbuch, M., & Patilaya, P. (2016). Anthelmintic Activity of Ethanolic and Aqueous Extracts of Allium fistulosum L. Leaves on Ascaris lumbricoides. International Journal of Pharmaceutical and Clinical Research. 8(9), 1310-1313. https://tinyurl.com/Allium-fistulosum-Leaves
- Keyzers, T. (2019). Improved methods for the quantification of viable ascaris suum and application to biosolids (Thesis). Michigan Technological University, United States
- Khajehei, F., Niakousari, M., Seidi Damyeh, M., Merkt, N., Claupein, W., & Graeff-Hoenninger, S. (2017). Impact of ohmic-assisted decoction on bioactive components extracted from yacon (Smallanthus sonchifolius Poepp.) leaves: Comparison with conventional decoction. Molecules, 22(12), 2043. https://doi.org/10.3390/molecules22122043
- Labana, R. V., Romero, V. A., Guinto, A. M., Caril, A. N., Untalan, K. D., Reboa, A. J. C., Sandoval, K. L., Cada, K. J. S., Lirio, G. A. C., Bernardo, I. R. A., Arocha, L. J. M., & Dungca, J. Z. (2021). Prevalence and intensity of soil-transmitted helminth infections among school-age children in the Cagayan Valley, the Philippines. Asian Pacific Journal of Tropical Medicine, 14(3), 113–121. https://doi.org/10.4103/1995-7645.307533
- Mationg, M. L. S., Tallo, V. L., Williams, G. M., Gordon, C. A., Clements, A. C. A., McManus, D. P., & Gray, D. J. (2021). The control of soil-transmitted helminthiases in the Philippines: The story continues. Infectious Diseases of Poverty, 10(1), 85. https://doi.org/10.1186/s40249-021-00870-z
- Mead, J.R., & McNair, N. (2006). Anthelmintic activity of flavonoids and isoflavones against cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiology Letters. 259(1), 153-157. https://doi.org/10.1111/j.1574-6968.2006.00263.x
- Melnychuk, V., & Yuskiv, I. (2018). Disinvasive efficacy of chlorine-based preparations of domestic production for eggs of nematodes of the species Aonchotheca bovis parasitizing in sheep. Ukrainian Journal of Veterinary and Agricultural Sciences. 1(2), 15–18. https://doi.org/10.32718/ujvas1-2.04
- Panjaitan, R. G. P., Elisa, E., & Wahyuni, E. S. (2021). The Anthelmintic Activity of Cawat Anuman (Bauhinia Sp.) Leaves Against Ascaridia galli Worms. Pharmacognosy Journal. 13(3), 626-630. https://doi.org/10.5530/pj.2021.13.79
- Pettersson, E., Sjölund, M., Dórea, F. C., Lind, E. O., Grandi, G., Jacobson, M., Höglund, J., & Wallgren, P. (2021). Gastrointestinal parasites in Swedish pigs: Prevalence and associated risk factors for infection in herds where animal welfare standards are improved. Veterinary Parasitology, 295, 109459. https://doi.org/10.1016/j.vetpar.2021.109459
- Pettersson, E., Sjölund, M., Wallgren, T., Lind, E. O., Höglund, J., & Wallgren, P. (2021). Management practices related to the control of gastrointestinal parasites on Swedish pig farms. Porcine Health Management, 7(1), 12. https://doi.org/10.1186/s40813-021-00193-3
- Sulik, M., Antoszczak, M., HuczyĆski, A., & Steverding, D. (2023). Antiparasitic activity of ivermectin: Four decades of research into a “wonder drug.” European Journal of Medicinal Chemistry, 261, 115838. https://doi.org/10.1016/j.ejmech.2023.115838
- Tenorio, J.C.B. (2022). Discussing One Health: Veterinary Public Health, Health Communication, and Collaborations and Partnerships. Advances in Animal and Veterinary Sciences. 10(4), 852-857. https://doi.org/10.17582/journal.aavs/2022/10.4.852.857
- Toklo, P. M., Yayi Ladekan, E., Linden, A., Hounzangbe-Adote, S., Kouam, S. F., & Gbenou, J. D. (2021). Anthelmintic flavonoids and other compounds from Combretum glutinosum Perr. Ex DC (Combretaceae) leaves. Acta Crystallographica Section C Structural Chemistry, 77(9), 505–512. https://doi.org/10.1107/S2053229621007841
- Vercruysse, J., & Claerebout, E. (2023). Resistance to anthelmintics – pharmacology. Retrieved from https://tinyurl.com/Resistance-to-Anthelmintics
- Yan, G. (2020). Pork remains the favourite in the Philippines. Retrieved from https://tinyurl.com/3ywmtpvu
- Ybañez, R. H. D., Resuelo, K. J. G., Kintanar, A. P. M., & Ybañez, A. P. (2018). Detection of gastrointestinal parasites in small-scale poultry layer farms in Leyte, Philippines. Veterinary World, 11(11), 1587–1591. https://doi.org/10.14202/vetworld.2018.1587-1591
- Ybañez, R. H. D., Busmeon, C. G. R., Viernes, A. R. G., Langbid, J. Z., Nuevarez, J. P., Ybañez, A. P., & Nishikawa, Y. (2019). Endemicity of Toxoplasma infection and its associated risk factors in Cebu, Philippines. PLOS ONE, 14(6), e0217989. https://doi.org/10.1371/journal.pone.0217989
- Youssef, F. S., Ovidi, E., Musayeib, N. M. A., & Ashour, M. L. (2021). Morphology, Anatomy and Secondary Metabolites Investigations of Premna odorata Blanco and Evaluation of Its Anti-Tuberculosis Activity Using In Vitro and In Silico Studies. Plants, 10(9), 1953. https://doi.org/10.3390/plants10091953
Full Text:
Note: Kindly Login or Register to gain access to this article.
ISSN 2984-8385 (Online)
ISSN 2984-8288 (Print)