HomePUP Journal of Science and Technologyvol. 17 no. 1 (2024)

Assessment of Microplastics in Fish GI Tracts and Shallow Water Sediments in Pugad Baboy Mangrove Area, Kawit, Cavite Using Fourier Transform Infrared-Attenuated Total Reflectance Spectroscopy

Darl-leen A. Gacilos | Jeka G. Lahaylahay | Elaine L. Malihan | Jose Carlos Basilio L. Taroy

Discipline: ecology and environmental biology

 

Abstract:

Plastic pollution has been an ongoing environmental problem overwhelming people worldwide. Microplastics (MPs) are defined by their small sizes (<5mm) and are continuously pressing concerns due to the threats they bring to the ecosystem. The scarcity in microplastics study limits the resources for future researchers for methods and applications to explore. This study assessed, characterized, and quantified microplastics contamination in fish gastrointestinal (GI) tracts and sediments in the Pugad Baboy Mangrove areas of Kawit, Cavite. Sediments and fish GI tract samples were treated using a modified methodology. The collected microplastic particles under investigation were separated through density separation using ZnCl2 followed by base digestion using KOH. MP particles were examined using an optical microscope and characterized through Fourier Transform Infrared– Attenuated Total Reflectance (FTIR-ATR) spectroscopy. Results showed that four polymer identities were detected in the particles – polyethylene, polypropylene, polystyrene, and polyethylene terephthalate. A total of 67 fragments were isolated from which approximately 26.9% exhibited irregular shapes, 35.8% had a rounded and pellet-like appearance, and 37.3% were filaments. A high recovery rate of at least 90% upon analysis was recorded and the implementation of the proposed modified methodology is strongly recommended based on recovery and results obtained. These findings provided valuable insights into the physical characteristics and distribution of microplastics in the studied environment.



References:

  1. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  2. Alimba, C.G. & Faggio, C. (2019). Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology. https://doi.org/10.1016/j.etap.2019.03.001  
  3. Argamino CR. & Janairo JI. (2016). Qualitative assessment and management of microplastics in Asian green mussels (Perna viridis) cultured in Bacoor Bay, Cavite, Philippines. Environment Asia, 9 (2), 48-54. DOI: 10.14456/ea.2016.7
  4. Bilugan, Q., Limbago J., & Guitierrez R. (2021). Detection and quantification of microplastics from cultured green mussel Perna viridisin. Bacoor Bay, Cavite, Philippines. Journal of Environment and Sustainability. https://doi.org/10.22515/sustinere.jes.v5i2.166  
  5. Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology. https://doi.org/10.1021/es201811s  
  6. Chang, S. (2012). Analysis of polymer standards by Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance and Pyrolysis Gas Chromatography/Mass Spectroscopy and the creation of searchable libraries. https://www.marshall.edu/forensics/files/Chang_Shaina_Research_Paper.pdf  
  7. Chen, Y., Wen, D., Pei, J., Fei, Y., Ouyang, D., Zhang, H., & Luo, Y. (2020). Identification and quantification of microplastics using Fourier Transform Infrared Spectroscopy: Current status and future prospects. Current Opinion in Environmental Science and Health. https://doi.org/10.1016/j.coesh.2020.05.004  
  8. Chen, X., Xu, M., Yuan, L., Huang, G., Chen, X., & Shi, W. (2021). Degradation degree analysis of environmental microplastics by micro-FTIR imaging technology. Chemosphere. 274, 129779. https://doi.org/10.1016/j.chemosphere.2021.129779
  9. Claessens, M., Meester, S. D., Landuyt, L. V., Clerck, K. D., & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2011.06.030  
  10. Dehaut, A., Cassone A. L., Frere L., Hermabessiere L., Himber C., Rinnert E., Riviere G., Lambert C., Soudant P., Huvet A. & Duflos G. (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution. https://doi.org/10.1016/j.envpol.2016.05.018   
  11. Duong, T.T., Le, P.T., Nguyen, T.N.H., Hoang, T.Q., Ngo, H.M., Doan, T.O., … & Strady, E. (2022). Selection of a density separation solution to study microplastics in tropical riverine sediment. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-021-09664-0
  12. Espiritu E., Dayrit, S.A., Coronel, A.S., Paz N.S., Ronquillo, P.I., Castillo, V.C., & Enriquez, E.P. (2019). Assessment of quantity and quality of microplastics in the sediments, waters, oysters, and selected fish species in key sites along the Bombong estuary and the coastal waters of Ticalan in San Juan, Batangas. The Philippine Journal of Science,148 (4), 789-801. https://core.ac.uk.pdf  
  13. Fischer, M., & Scholz-Böttcher, B. M. (2019). Microplastics analysis in environmental samples – Recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass related data. Analytical Methods, 11(18), 2489-2497.  https://doi.org/10.1039/C9AY00600A  
  14. Garcia, A., Suarez, D.C., Li, J., & Rotchell, J.M. (2020). A comparison of microplastic contamination in freshwater fish from natural and farmed sources. Environmental Science and Pollution Research. Retrieved from https://doi.org/10.1007/s11356-020-11605-2  
  15. Garcés-Ordóñez, O., Espinosa, L. F., Cardoso, R. P., Issa Cardozo, B. B., & Meigikos dos Anjos, R. (2020). Plastic litter pollution along sandy beaches in the Caribbean and Pacific coast of Colombia. Environmental Pollution, 115495. https://doi.org/10.1016/j.envpol.2020.115495  
  16. Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/sciadv.1700782  
  17. Gulizia, A., Brodie, E., Daumuller, R., Bloom, S., Corbett, T., Santana, M., Motti, C., & Vamvounis G. (2022). Evaluating the effect of chemical digestion treatments on polystyrene microplastics: Recommended updates to chemical digestion protocols. Macromolecular Chemistry and Physics.  https://doi.org/10.1002/macp.202100485
  18. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology. https://doi.org/10.1021/es2031505  
  19. Hoffman, A. & Turner, K. (2015). Microbeads and engineering design in chemistry: No small educational investigation. ACS Publictions. https://doi.org/10.1021/ed500623k  
  20. Imhof, H. K., Laforsch, C., Wiesheu, A. C., Schmid, J., Anger, P. M., Niessner, R., & Ivleva, N. P. (2016). Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research. https://doi.org/10.1016/j.watres.2016.03.015  
  21. Imhof, H., Schmid, J., Niessner, R., Ivleva, N.P. & Laforsch, C. (2012). A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography Methods. https://doi.org/10.4319/lom.2012.10.524  
  22. Issac, M. N., & Kandasubramanian, B. (2021). Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research, 28(45), 62213-62221. https://doi.org/10.1007/s11356-021-13184-2
  23. Ivleva, N. P. (2021). Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.1c00178  
  24. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Lavender Law, K. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. Retrieved from http://jambeck.engr.uga.edu/wp-content/uploads/2022/02/science.1260352-Jambeck-et-al-2015.pdf  
  25. Karami, A., Golieskardi, A., Choo, C. K., Romano, N., Ho, Y. B., & Salamatinia, B. (2016). A high-performance protocol for extraction of microplastics in fish. The Science of the Total Environment, 578, 485-494. https://doi.org/10.1016/j.scitotenv.  2016.10.213
  26. Kirstein, I. V., Hensel, F., Gomiero, A., Iordachescu, L., Vianello, A., Wittgren, H. B., & Vollertsen, J. (2021). Drinking plastics? – Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS. Water Research, 188. https://doi.org/10.1016/j.watres.2020.116519   
  27. Kühn, S., van Werven, B., van Oyen, A., Meijboom, A., Bravo Rebolledo, E. L., & van Franeker, J. A. (2017). The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2016.11.034
  28. Kundu, A., Shetti, N. P., Basu, S., Reddy, K. R., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Identification and removal of micro- and nano-plastics: Efficient and cost-effective methods. Chemical Engineering Journal, 430, 129816. https://doi.org/10.1016/j.cej.2021.129816  
  29. Lampman, S. (2003). Characterisation and failure analysis of plastics. ASM International, Ohio, USA 303–312. https://doi.org/10.31399/asm.hb.v11B.9781627083959
  30. Lares M., Ncibi, M.C., Sillanpää, M., & Sillanpää M. (2019). Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-04584-6  
  31. Liang, C.Y. & Krimm, S. (1959). Infrared spectra of high polymers. Journal of Polymer Science. https://doi.org/10.1002/pol.1958.1202711520   
  32. Lusher A. & Millian, G. (2018). Microplastic extraction from marine vertebrate digestive tracts, regurgitates and scats: A protocol for researchers from all experience levels. DOI.org/10.21769/BioProtoc.3087
  33. Lusher AL, Welden NA, Sobral P, Cole, M. (2020). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analysis of Nanoplastics and Microplastics in Food (1st ed). https://doi.org/10.1039/c6ay02415g
  34. Maghsodian, Z., Sanati, A.M., Tahmasebi, S., Shahriari, M.H., & Ramavandi, B. (2022). Study of microplastics pollution in sediments and organisms in mangrove forests: A review. Environmental Research, 208. https://doi.org/10.1016/j.envres.2022.112725   
  35. Majewsky, M., Bitter, H., Eiche, E., & Horn, H. (2016). Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Science of the Total Environment, 568. https://doi.org/10.1016/j.scitotenv.2016.06.017   
  36. Martin, C., Baalkhuyur, F., Valluzzi, L., Saderne, V., Cusack, M., Almahasheer, H.,… Duarte, C. M. (2020). Exponential increase of plastic burial in mangrove sediments as a major plastic sink. Science Advances. https://doi.org/10.1126/sciadv.aaz5593  
  37. Mattsson, K., Ekstrand, E., Granberg, M., Hassellöv, M., & Magnusson, K. (2022). Comparison of pre-treatment methods and heavy density liquids to optimize microplastic extraction from natural marine sediments. Scientific Reports, 12(1).  https://doi.org/10.1038/s41598-022-19623-5
  38. Navarro, C.K.P., Arcadio, C.G.L.A., Similatan, K.M., Inocente, S.A.T., Banda, M.H.T., Capangpangan, R.Y., Torres, A.G., & Bacosa, H.P. (2022). Unraveling microplastic pollution in mangrove sediments of Butuan Bay, Philippines. Sustainability. https://doi.org/10.3390/su142114469  
  39. Neal, M. & Andrady, A. (2009). Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098%2Frstb.2008.0304  
  40. Olesen, K.B., Alst, N., Vianello, A., Simon, M., Liu, F., & Vollertsen, J. (2017). Analysis of microplastics using FTIR imaging – Application note. https://www.agilent.com/cs/library/applications/ 5991-8271EN_microplastics_ftir_application.pdf
  41. Osorio, E., Tanchuling, M.A. & Diola, B.L. (2021). Microplastics occurrence in surface waters and sediments in five river mouths of Manila Bay. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2021.719274  
  42. Pfeiffer, F. & Fischer, E.K. (2020). Various digestion protocols within microplastic sample processing—Evaluating the resistance of different synthetic polymers and the efficiency of biogenic organic matter destruction. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2020.572424  
  43. Pico, Y., Alfarhan, A., & Barcelo, D. (2018). Nano and microplastic analysis: Focus on remediation technologies and occurrence in freshwater ecosystems. Trends in Analytical Chemistry, 113, 409-425.  https://doi.org/10.1016/j.trac.2018.08.022  
  44. Primpke, S., Christiansen, S. H., Cowger, W., De Frond, H., Deshpande, A., Fischer, M., Wiggin, K. J. (2020). Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Applied Spectroscopy. https://doi.org/10.1177/0003702820921465  
  45. Reineccius, J., Bresien, J., & Waniek, J. J. (2021). Separation of microplastics from mass-limited samples by an effective adsorption technique. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147881  
  46. Renner, G., Schmidt, T. C., & Schram, J. (2018). Analytical methodologies for monitoring micro(nano)plastics: Which are fit for purpose? Current Opinion in Environmental Science & Health. https://doi.org/10.1016/j.coesh.2017.11.001  
  47. Rodrigues, M. O., Gonçalves, A. M. N., Gonçalves, F. J. M., and Abrantes, N. (2020). Improving cost-efficiency for MPs density separation by Zinc Chloride Reuse. MethodsX, 7. https://doi.org/10.1016/j.mex.2020.100785
  48. Saifullah, A., Kamal, A.H., Idris, M.H, Rajaee, A. & Bhuiyan, K.A. (2015). Phytoplankton in tropical mangrove estuaries: Role and Interdependency. Forest Science and Technology, 12(2). https://doi.org/10.1080/21580103.2015.1077479
  49. Smith, B. (2021). The infrared spectra of polymers III: Hydrocarbon polymers. Spectroscopy, https://www.spectroscopyonline.com/view/the-infrared-spectra-of-polymers-iii-hydrocarbon-polymers  
  50. Sobhani, Z., Zhang, X., Gibson, C., Naidu, R., Mallavarapu, M., & Fang, C. (2020). Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm. Water Research. https://doi.org/10.1016/j.watres.2020.115658  
  51. RIVM (2015, Jan 16) Towards a definition of microplastics: Considerations for the specification of physico-chemical properties [RIVM].  https://www.rivm.nl/bibliotheek/rapporten/2015-0116.pdf.  
  52. Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A., & Da Ros, L. (2013). Microplastic particles  in  sediments  of  Lagoon  of   Venice,  Italy:  First   observations   on   occurrence,     spatial  patterns and    identification.  Estuarine, Coastal and Shelf Science, 130, 54-61. https://doi.org/10.1016/j.ecss.2013.03.022
  53. Xiang, S., Xie, Y. Sun, X., Du, H. & Wang, J. Identification and quantification of microplastics in the aquaculture environment. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.804208    
  54. Zbyszewski, M., & Corcoran, P. L. (2011). Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water, Air, & Soil Pollution, 220(1-4), 365–372. https://doi.org/10.1007/s11270-011-0760-6
  55. Zhang, T., Sun, Y., Song, K., Du, W., Huang, W., Gu, Z., & Feng, Z. (2020). Microplastics in different tissues of wild crabs at three important fishing grounds in China. Marine Pollution Bulletin, 160, 111558. https://doi.org/10.1016/j.marpolbul. 2020.111558   
  56. Zhou, Q.,  Tu, C.,  Fu, C., Li, Y.,  Zhang, H.,  Xiong, K., … Luo, Y. (2019).   Characteristics and distribution of microplastics in the coastal mangrove sediments of China.  Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.134807