HomePUP Journal of Science and Technologyvol. 17 no. 1 (2024)

Phytochemical profiling of methanolic extractand petroleum ether soluble fraction of Nami (Dioscorea hispida Dennst.)leaves

Adjale G. Wyson | John Daryl B Wyson

Discipline: Plant Sciences

 

Abstract:

Medicinal plants are essential in drug development since they serve as raw materials in the pharmaceutical industry. One such plant, Nami (Dioscorea hispida Dennst.), which belongs to the family Dioscoreaceae, is well known for its medicinal properties. This study aimed to identify the bioactive metabolites present in the leaves of D. hispida The phytochemical screening of methanolic extract and petroleum ether soluble fraction extract of D. hispida leaves revealed the presence of tannins, flavonoids, saponins, alkaloids, glycosides, terpenoids, and steroids, all of which possess medicinal properties. Hence, these bioactive metabolites may be employed to develop innovative drugs for several diseases.



References:

  1. Albonico M, Bickle Q, Ramsan M, Montresor A, Savioli L, & Taylor M. (2003). Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bulletin of the World Health Organization 81, 343–352
  2. Albonico M et al. (2008). Monitoring Anthelmintic Efficacy for Soil Transmitted Helminths (STH). https://www.who.int/docs/default-source/ntds/soil-transmitted-helminthiases/monitoring-anthelmintic-efficacy-for-sth-march-2008.pdf
  3. Burkill, I. H. (1966). A dictionary of the economic products of the Malay Peninsula (Revised reprint of 1st ed., 1935, Vols. 1–2). Ministry of Agriculture and Co-operatives.
  4. Brunet, S., & Hoste, H. (2006). Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. Journal of Agricultural and Food Chemistry, 54(20), 7481–7487.
  5. Cabardo Jr, D. E., & Portugaliza, H. P. (2017). Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. International Journal of Veterinary Science and Medicine, 5(1), 30–34. https://doi.org/10.1016/j.ijvsm.2017.02.001
  6. Chagas, A. C. S. (2015). Medicinal plant extracts and nematode control. CABI Reviews, 2015, 1–8. https://doi.org/10.1079/PAVSNNR201510008
  7. Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., & Lin, Y. (1998). Tannins and human health: A review. Critical Reviews in Food Science and Nutrition, 38(6), 421–464. https://doi.org/10.1080/10408699891274273
  8. Clinton, C. (2009). Plant tannins: A novel approach to the treatment of ulcerative colitis.

Natural Medicine Journal, 1(11), 1–14.

  1. D’Addabbo, T., Carbonara, T., Leonetti, P., Radicci, V., Tava, A., & Avato, P. (2011). Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochemistry Reviews, 10(4), 503–519. https://doi.org/10.1007/s11101-010-9180-2
  2. Dewi, A. L., Siregar, V. D., & Kusumayanti, H. (2019). Effect of extraction time on tannin antioxidant level and flavonoid on Pandan Wangi leaf (Pandanus amaryllifolius Roxb) using hydrothermal extractor. Journal of Physics: Conference Series, 1295(1), 012066. https://doi.org/10.1088/1742-6596/1295/1/012066
  3. Gopalakrishnan, K., & Udayakumar, R. (2014). GC-MS analysis of phytocompounds of leaf and stem of Marsilea quadrifolia (L.). International Journal of Biochemistry Research & Review, 4(6), 517–526. https://doi.org/10.9734/IJBCRR/2014/11350
  4. Grattan, B. J., Jr. (2013). Plant sterols as anticancer nutrients: Evidence for their role in breast cancer. Nutrients, 5, 359–387.
  5. Hammond, J. A., Fielding, D., & Bishop, S. C. (1997). Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications, 21(3), 213–228. https://doi.org/10.1023/A:1005884429253
  6. Hanum, F., & Hamzah, N. (1999). The use of medicinal plant species by the Temuan Tribe of Ayer Hitam Forest, Selangor, Peninsular Malaysia. Pertanika Journal of Tropical Agricultural Science, 22(2), 85–94.
  7. Hartati, R., Suganda, A. G., Fidrianny, I., & Ginting, T. M. (2014). Total flavonoid content and antimicrobial properties of four species of Zingiberaceae. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 142–144.
  8. Hrckova, G., & Velebny, S. (2010, September). Flavonoid silymarin potentiates antihelmintic effect of praziquantel via down-regulation of oxidative stress and fibrogenesis in the liver. In Proceedings of the World Medical Conference (pp. 250–257).
  9. Kapale, R., & Kumar, M. (2011). Medicinal plants of Amarkantak Balco open cost forest area, India. Pharmacologyonline, 3, 1290–1295.
  10. Klongsiriwet, C., Quijada, J., Williams, A. R., Mueller-Harvey, I., Williamson, E. M., & Hoste, H. (2015). Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. International Journal for Parasitology: Drugs and Drug Resistance, 5(3), 127-134. https://doi.org/10.1016/j.ijpddr.2015.06.001
  11. Kumar, S., Tripathy, P. K., & Jena, P. K. (2012). Evaluation of nutritional and medicinal values of wild tuber crops (Dioscorea spp.) from Simlipal Biosphere Reserve Forest, Odisha, India. In Proceedings of the 37th annual conference and P. Parija Memorial National Conference on “Recent Advances in Plant Biotechnology” (pp. 41–42).
  12. Kumarasingha, R., Palombo, E. A., Bhave, M., Yeo, T. C., Lim, D. S. L., Tu, C. L., Shaw, J. M., & Boag, P. R. (2014). Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools. International Journal for Parasitology, 44(5), 291–298. https://doi.org/10.1016/j.ijpara.2014.01.008
  13. Lim, T. K. (2016). Dioscorea hispida. In Edible Medicinal and Non-Medicinal Plants (pp. 266–274). https://doi.org/10.1007/978-94-017-7276-1_13
  14. Lima, A. M. B., Siani, A. C., Nakamura, M. J., & D’Avila, L. A. (2015). Selective and cost-effective protocol to separate bioactive triterpene acids from plant matrices using alkalinized ethanol: Application to leaves of Myrtaceae species. Pharmacognosy Magazine, 11(43), 470–476. https://doi.org/10.4103/0973-1296.160453
  15. Mehlhorn, H., Al-Quraishy, S., Al-Rasheid, K. A., Jatzlau, A., & Abdel-Ghaffar, F. (2011). Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections. Parasitology Research, 108, 1041–1046. https://doi.org/10.1007/s00436-010-2169-3
  16. Melzig, M. F., Bader, G., & Loose, R. (2001). Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Medica, 67(01), 43–48. https://doi.org/10.1055/s-2001-10632
  17. Miah, M. M., Das, P., Ibrahim, Y., Shajib, M. S., & Rashid, M. A. (2018). In vitro antioxidant, antimicrobial, membrane stabilization and thrombolytic activities of Dioscorea hispida Dennst. European Journal of Integrative Medicine, 19, 121–127. https://doi.org/10.1016/j.eujim.2018.02.002
  18. Mirza, Z., Soto, E. R., Hu, Y., Nguyen, T. T., Koch, D., Aroian, R. V., & Ostroff, G. R. (2020). Anthelmintic activity of yeast particle-encapsulated terpenes. Molecules, 25(13), 2958. https://doi.org/10.3390/molecules25132958
  19. Nashriyah, M., Salmah, T., Nur Atiqah, M. Y., Siti Nor Indah, O., Muhamad Azhar, A. W., Munirah, S., Nornasuha, Y., & Abdul Manaf, A. (2012). Ethnobotany and distribution of Dioscorea hispida Dennst. (Dioscoreaceae) in Besut, Marang and Setiu Districts of Terengganu, Peninsular Malaysia. World Academy of Science, Engineering and Technology, 72, 240–243.
  20. Ndjonka, D., Abladam, E. D., Djafsia, B., Ajonina-Ekoti, I., Achukwi, M. D., & Liebau, E. (2014). Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. Journal of Helminthology, 88(4), 481–488. https://doi.org/10.1017/S0022149X1300045X
  21. Neamsuvan, O., Tuwaemaengae, T., Bensulong, F., Asae, A., & Mosamae, K. (2012). A survey of folk remedies for gastrointestinal tract diseases from Thailand's three southern border provinces. Journal of Ethnopharmacology, 144(1), 11–21. https://doi.org/10.1016/j.jep.2012.07.043
  22. Novobilský, A., Stringano, E., Carbonero, C. H., Smith, L. M. J., Enemark, H. L., Mueller-Harvey, I., & Thamsborg, S. M. (2013). In vitro effects of extracts and purified tannins of sainfoin (Onobrychis viciifolia) against two cattle nematodes. Veterinary Parasitology, 196(3-4), 532–537. https://doi.org/10.1016/j.vetpar.2013.03.024
  23. Palanisamy, P., Jayakar, B., Kumuthavalli, M. V., Yoganath Kumar, & Srinath, K. R. (2012). Preliminary phytochemical evaluation of whole plant extract of Dipteracanthus prostratus Nees. International Research Journal of Pharmacy, 3(3), 150–153.
  24. Piña-Vázquez, D. M., Mayoral-Peña, Z., Gómez-Sánchez, M., Salazar-Olivo, L. A., & Arellano-Carbajal, F. (2017). Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and levamisole-resistant Caenorhabditis elegans strains. Journal of Ethnopharmacology, 202, 92–96. https://doi.org/10.1016/j.jep.2017.03.004
  25. Pinder, A. R. (1957). An alkaloid of Dioscorea hispida, Dennstedt–IV: Further investigations on the lactose ring. Tetrahedron, 1(4), 301–309.
  26. Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39(5), 603-613. https://doi.org/10.1016/S0041-0101(00)00154-9
  27. Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12, 1–12. https://doi.org/10.1186/1472-6882-12-221
  28. Santos, A. C. V., Santos, F. O., Lima, H. G., Da Silva, G. D., Uzêda, R. S., Dias, Ê. R., ... & Batatinha, M. J. M. (2018). In vitro ovicidal and larvicidal activities of some saponins and flavonoids against parasitic nematodes of goats. Parasitology, 145(14), 1884–1889. https://doi.org/10.1017/S0031182018000689
  29. Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1–10. https://doi.org/10.4314/ajtcam.v8i1.60483
  30. Saxena, M., Saxena, J., Nema, R., Singh, D., & Gupta, A. (2013). Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry, 1, 168–182.
  31. Spiegler, V., Liebau, E., & Hensel, A. (2017). Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Natural Product Reports, 34(6), 627–643. https://doi.org/10.1039/C6NP00126B
  32. Sreeja, P. S., Arunachalam, K., Saikumar, S., Kasipandi, M., Dhivya, S., Murugan, R., & Parimelazhagan, T. (2018). Gastroprotective effect and mode of action of methanol extract of Sphenodesme involucrata var. paniculata (CB Clarke) Munir (Lamiaceae) leaves on experimental gastric ulcer models. Biomedicine & Pharmacotherapy, 97, 1109–1118. https://doi.org/10.1016/j.biopha.2017.11.030
  33. Starlin, T., Prabha, P. S., Thayakumar, B. K. A., & Gopalakrishnan, V. K. (2019). Screening and GC-MS profiling of ethanolic extract of Tylophora pauciflora. Bioinformation, 15(6), 425–429. https://doi.org/10.6026/97320630015425
  34. Stuart, G. U. (2013). Philippine alternative medicine: Manual of some Philippine medicinal plants. Retrieved from http://www.stuartxchange.org/OtherHerbals.html
  35. VanWagenen, B. C., Larsen, R., Cardellina, J. H., Randazzo, D., Lidert, Z. C., & Swithenbank, C. (1993). Ulosantoin, a potent insecticide from the sponge Ulosa ruetzleri. The Journal of Organic Chemistry, 58(2), 335–337. https://doi.org/10.1021/jo00054a013
  36. Vercruysse, J., Albonico, M., Behnke, J., Bundy, D., Coles, G., Churcher, T., Drake, L., Hotez, P., Kaplan, R., Koo, K., Kotze, A., McCarthy, J., Prichard, R., von Samson-Himmelstjerna, G., Wilson, M., Engels, D., & Montresor, A. (2008). Monitoring anthelmintic efficacy for soil transmitted helminths (STH). https://www.who.int/docs/default-source/ntds/soil-transmitted-helminthiases/monitoring-anthelmintic-efficacy-for-sth-march-2008.pdf
  37. Wang, G. X., Han, J., Zhao, L. W., Jiang, D. X., Liu, Y. T., & Liu, X. L. (2010). Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine, 17(14), 1102–1105. https://doi.org/10.1016/j.phymed.2010.04.012
  38. World Health Organization. (2002). WHO traditional medicine strategy 2002–2005 (WHO/EDM/TRM/2002.1). World Health Organization. https://www.who.int/publications/i/item/WHO-EDM-TRM-2002.1
  39. World Health Organization. (2024). Neglected tropical diseases. https://www.who.int/health-topics/neglected-tropical-diseases#tab=ta
  40. Yadav P, Singh R. 2011. A Review on Anthelmintic Drugs and their Future scope. International Journal of Pharmacy and Pharmaceutical Sciences 3(3):17-21.
  41. Yusuf, M., Begum, J., Hoque, M. N., & Chowdhury, J. U. (2009). Medicinal plants of Bangladesh (Revised and enlarged). Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories.