HomeAnnals of Tropical Researchvol. 46 no. 1 (2024)

Air pollution tolerance index of selected tree species in urbanized areas of Butuan City, Philippines

Amor M. Natividad | Chime M. Garcia | Reymond C. Sandueta

 

Abstract:

Assessing the sensitivity or tolerance of plants to air pollution is a valuable method to address the issue of air pollution in a locality. The aim of this study was to examine the Air Pollution Tolerance Index (APTI) of selected tree species in significant locations in Butuan City. This study purposively sampled 19 tree species collected from three areas in Butuan City. The trees were evaluated using APTI which consists of four parameters: leaf-extract pH, relative water content, total chlorophyll content, and ascorbic acid content. The selected tree species were categorized as tolerant, intermediately tolerant, and sensitive based on the calculated APTI. The APTI results revealed that only three species namely Ficus elastica, Premna odorata, and Mangifera altissima were identified to be tolerant species and could be suitable to act as sinks of air pollutants. Sensitive species were Inocarpus fagifer and Terminalia catappa. APTI can be a useful tool that can help plan and decided which tree species to plant in greenbelt areas in the city to remediate air pollutants.



References:

  1. Agbaire PO. 2009. Air Pollution Tolerance Indices (APTI) of some plants around Erhoike-Kokori oil exploration site of Delta State, Nigeria. International Journal of Physical Sciences 4:366-368
  2. Arnon DI. 1949. Copper Enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiology 2:1-15
  3. Asada K. 1999. The water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 50:601-639 
  4. Bakiyaraj R and Ayyappan D. 2014. Air pollution tolerance index of some terrestrial plants around an industrial area. International Journal of Modern Research and Reviews 2 (1):1 7
  5. Beckett KP, Freer-Smith P, & Taylor G. 2000. Effective tree species for local air quality management. 18 Journal of Arboriculture 26(1):12
  6. Chauhan A & Joshi PC. 2010. Effect of ambient air pollutants on wheat and mustard crops growing in the vicinity of urban and industrial areas. New York Science Journal 3(2):52–58
  7. Conklin PL. 2001. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell & Environment 24: 383 394
  8. Deepika,  Gour  P,  &  Haritash  AK.  2016.  Air  pollution  tolerance  of  trees  in  an educational institute in Delhi. International Journal of Environmental Science. 6(6):979–986
  9. DENR  Administrative  Order  (DAO)  No.  2000-81.  2000.  Implementing  Rules  and Regulations  For  RA  8749.  available  at  https://air.emb.gov.ph/wp-content/uploads/2016/04/DAO-2000-81.pdf  accessed last November 2020
  10. Dheeravathu SN, Tyagi VC, Gupta CK & Antony E. 2018. Manual on Plant Stress Physiology.  ICAR-Indian  Grassland  and  Fodder  Research  Institute,  Jhansi. available at http://www.igfri.res.in/cms/Publication/Miscellaneous/Manual%20on%20Plant%20Stress%20Physiology%20by%20dr.seva%20nayak.pdf accessed last February 2019
  11. Ecosystems Research and Development Bureau (ERDB). 2012. Rehabilitation and Ecological  Restoration  R&D  for  Marginal  and  Degraded  Landscapes  and Seascapes. A Research Compendium of Rehabilitation Strategies for Damaged Urban Areas. Ecosystems Research and Development Bureau, Department of Environment and Natural Resources, College, Laguna
  12. Environmental Management Bureau (EMB). 2019. Air Quality Status Report (Caraga Region). Department of Environment and Natural Resources Caraga Region XIII
  13. Escobedo FJ, Wagner JE, Nowak DJ,   De Le Maza CL, Rodriguez M, & Crane DE. 2008. Analyzing the cost effectiveness of Santiago, Chiles policy of using urban forests  to  improve  air  quality. Journal  of  Environmental.  Management 86:148 157
  14. Enete I, Chukwudeluzu VU, & Okolie AO. 2013. Evaluation of air pollution tolerance index of plants and ornamental shrubs in Enugu City: Implications for urban heat island effect. World Environment 3(3):2163–1573
  15. Gandhi PE, Chandra RK & Sen SM. 2014. An evaluation of the susceptibility levels of different plants with economical importance growing in the urban and industrial region  of  Allabad  city,  India. African  Journal  of  Environmental  and  Waste Management 2(5):147–150
  16. Giri  S,  Shrivastava  D,  Deshmukh  K  &  Dubey  P.  2013.  Effect  of  air  pollution  on chlorophyll content of leaves. Current Agricultural Research Journal 1(2):93–98 
  17. Gonzalez  L, Gonzalez VM  & Reigosa MJ.  2001. Determination of relative water content.  Handbook  of  plant  ecophysiology  techniques  Kluwer.  Academic Publishers. Dordrecht (pp207–212).The Netherlands
  18. Hayat S, Hasan SA, Fariduddin Q & Ahmad A. 2008. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions 3(4):297–304
  19. Joshi PC and Swami A. 2009. Air pollution induced changes in the photosynthetic pigments  of  selected  plant  species.  Journal  in  Environmental  Biology30(2):295–298
  20. Jyothi JS and Jaya DS. 2010. Evaluation of air pollution tolerance index of selected plant  species  along  roadsides  in  Thiruvananthapuram,  Kerala. Journal  of Environmental Biology 31: 379–386
  21. Kapoor CS & Chittora AK. 2016. Efficient control of air pollution through plants a cost effective alternative. Journal of Climatology and Weather Forecasting  4(3):1–5
  22. Kapoor CS, Bamniya BR & Kapoor K. 2013. Efficient control of air pollution through plants, a cost-effective alternative: studies on Dalbergia sissoo Roxb. Environ Monit Assess 185(9):7565–7580
  23. Kapoor CS. 2014. Ficus benghalensis L. Tree as an efficient option for controlling air pollution. Research in Health and Nutrition 2:49–49
  24. Karmakara  D,  Ghosh  T  &  Padhy  PK.  2019.  Effects  of  air  pollution  on  carbon sequestration potential in two tropical forests of West Bengal, India. Ecological Indicators 98:377–388
  25. Kaushik  CP, Khaiwal R,  Yadav K, Mehta S &  Haritash  AK.  2006.  Assessment  of ambient air quality in urban centres of Haryana (India) in relation to different anthropogenic  activities  and  health  risks. Environmental  Monitoring  and Assessment 122:27–40
  26. Kuddus M, Kumari R & Ramteke PW. 2011. Studies on air pollution tolerance of selected plants in Allahabad city, India. Journal of Environmental Research and Management 2:042–046
  27. Lakshmi  PS,  Sarawanti  KL  &  Sirinivas  N.  2009.  Air  pollution  tolerance  index  of various  plant  species  growing  in  industrial  area. Journal of Environmental Sciences 2(3):203–206
  28. Liu YJ  and Ding H. 2008. Variation in air pollution tolerance index of plants near a steel factory: Implications for landscape-plant species selection for industrial areas. WSEAS Transaction Environmental Development 4(1):24–32
  29. Liu RK, Shen YW & Liu XJ. 1983. A study on physiological responses of plant to SO2. Plant Physiological Communication 4:25–28
  30. Madamanchi  NR    and  Alscher  RG.  1991.  Metabolic  bases  for  differences  in sensitivity of two pea cultivars to sulfur dioxide. Plant Physiology 97(1):88–93
  31. Mandal M and Mukherji S. 2000. Changes in chlorophyll content, chlorophyllase activity, Hill reaction, photosynthetic CO2  uptake, sugar and starch contents in five dicotyledonous plants exposed to automobile exhaust pollution. Journal of Environmental Biology 21(1):37–41 
  32. Mazid  M,  Khan  TA,  Khan  ZH,  Quddusi  S  &  Mohammad  F.  2011.  Occurrence, biosynthesis and potentialities of ascorbic acid in plants. International Journal of Plant Animal and Environmental Sciences 1(2):167–184
  33. Ninave SY, Chaudhari PR, Gajghate DG, Tarar JL & Foliar AD. 2001. Biochemical features  of  plants  as  indicators  of  air  pollution. Bulletin  of  Environmental Contamination and Toxicology 67(1):133–140
  34. Odilara CA, Egwaikhide PA, Esekheigbe A & Emua SA. 2006. Air Pollution Tolerance Indices  (APTI)  of  some  plant  species  around  llupeju  industrial  area,  Lagos. Journal of Applied Engineering Science 4:97–101
  35. Ogunkunle CO, Suleiman LB, Oyedeji S, Awotoye O & Fatoba PO. 2015. Assessing the air pollution tolerance index and anticipated performance index of some tree species  for  biomonitoring  environmental  health. Agroforestry  Systems89:447–454
  36. Pandey AK, Pandey M & Tripathi BD. 2016. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city. Ecotoxicology and Environmental Safety 134(2):358–364
  37. Prajapati SK and Tripathi BD. 2008. Seasonal variation of leaf dist accumulation and pigment  content  in  plant  species  exposed  to  urban  particulates  pollution. Journal of Environmental Quality 37:865–870
  38. Rai PK and Panda LL. 2014. Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: an IndoBurma hot spot region. Air Quality Atmosphere and Health  7(1):93–101
  39. Rao B and Deshpande V. 2006. Experimental biochemistry. Kent: Anshan (pp256)
  40. Rautenkranz AAF, Li L, Machler F &  Oertli  JJ. 1994.  Transport  of ascorbic and dehydroascorbic  acids  across  protoplast  and  vacuole  membranes  isolated from barley (Hordeum vulgari) leaves. Plant Physiology 94: 312–319
  41. Sahu C, Baste S & Sahu SK. 2020. Air pollution tolerance index (APTI) and expected performance  index  (EPI)  of  trees  in  sambalpur  town  of  India. SN Applied Sciences 2(8):1327
  42. Shannigrahi  AS,  Fukushima  T  &  Sharma  RC.  2004.  Anticipated  air  pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in India: An overview. International Journal of Environmental Studies 61(2):125–137
  43. Singh A. 1977. Practical plant physiology. Kalyari  Publishers (pp218-224). New Delhi, India
  44. Singh SK and Rao DN. 1983. Evaluation of plants for their tolerance to air pollution. In:  Proceedings  of  Symposium  on  Air  Pollution  Control  held  at  IIT,  Delhi 1:218–224
  45. Sisodia A and Dutta S. 2016. Air pollution Tolerance index of certain plant species: A study of national highway no-8, India. Journal of Environmental Research and Development 10(4):723–728 
  46. Sulistijorini AM, Zainal N, Nizar B, Ahmad A & Soekisman T. 2008. Tolerance level of roadside trees to air pollutants based on relative growth rate and air pollution tolerance index. Hayati Journal of Biosciences 15(3):123–129
  47. Swami A, Bhatt D & Joshi PC. 2004. Effects of automobile pollution on sal (Shorea robusta) and rihini (Mallotus phillipinensis) at Asarori, Dehradun. Himalayan Journal of Environment and Zoology 18(1):57-61
  48. Tsega YC and Prasad DAG. 2014. Variation in air pollution tolerance index and anticipated performance index of roadside plants in Mysore, India. Journal of Experimental Biology 35:185-190
  49. Uka UN, Belford EJD & Hogarh JN. 2019. Roadside air pollution in a tropical city: physiological and biochemical response from trees. Bulletin of the National Research Centre 43(90):1-12
  50. Verma V and Chandra N. 2014. Biochemical and ultrastructural changes in Sida cordifolia L. and Catharantus roseus L. to auto pollution. International Scholarly Research Notices 2014:263092
  51. Zhang PQ, Liu YJ, Chen X, Yang Z, Zhu MH & Li YP. 2016. Pollution resistance assessment  of  existing  landscape  plants  on  Beijing  streets  based  on  air pollution  tolerance  index  method. Ecotoxicology and Environmental Safety132:212–223
  52. Zhen  SY.  2000.  The  evolution  of  the  effects  of  SO   pollution  on  vegetation. 2Ecological Science 19(1):59–64