HomeJournal of Interdisciplinary Perspectivesvol. 3 no. 7 (2025)

An In Vitro Investigation of the Biological Activity of Alim, Melanolepis multiglandulosa, Euphorbiaceae Leaf Crude Extract for Wound Healing

Denilyn J. Lazo | Adeltrudes B. Caburian

Discipline: biology (non-specific)

 

Abstract:

Wounds are a significant issue in the Philippines due to the increasing cases of diabetes, a growing elderly population, and antimicrobial resistance. This situation has led to a high burden of care for infected wounds, diabetic foot ulcers, and burns within local hospitals. Wound healing is a vital physiological process that reestablishes the integrity of damaged tissue after an injury. Alim, M. multiglandulosa leaves, which are not well known for their medicinal benefits, were collected from Bacnotan, La Union, authenticated, dried, and extracted with absolute ethanol, then filtered through rotary evaporation. The crude extracts were investigated for biological activities in vitro. In disc diffusion and resazurin assays against S. aureus, 100% and 75%w/v exhibited antibacterial activity. It also prevented protein denaturation (87.46%w/v) with an IC?? (half-maximal inhibitory concentration) of 2.70 × 10²1 g/mL using the protein denaturation inhibition assay, and it provided 87.71%w/v protection of RBC in 1g/mL using the HRBC (human red blood cell) membrane stabilization technique, signifying anti-inflammatory. In DPPH (1,1- diphenyl-2, picrylhydrazyl) radical scavenging, there was 79.05% and 95.88% antioxidant activity at 0.0625 g/mL and 1g/mL, respectively, with an IC?? value of 0.907 mg/mL. A substantial correlation was found between TFC (total flavonoid content, 1.78 mg QUE/g extract) and TPC (total phenolic content, 357.08 mg GAE/g) and ferric reducing antioxidant power (FRAP) assay showed values of 9.48 and 12.33 µM FeSO?/g extract in 200 and 400 µL/mL extract, respectively, indicating good antioxidant activity. Additionally, it contains sterols, triterpenes, flavonoids, alkaloids, saponins, tannins, and polyphenols, which are responsible for its biological activities. M. multiglandulosa demonstrated its value as a plant-derived substitute for wound healing. Further studies are needed for isolating bioactive compounds for recommended drug preparation, in vivo evaluation, and efficacy determination in clinical trials.



References:

  1. Abesamis, G. M. M., & Cruz, J. J. V. (2019). Bacteriologic profile of burn wounds at a tertiary government hospital in the Philippines—UP-PGH ATR Burn Center. Journal of Burn Care & Research, 40(5), 658–668. https://doi.org/10.1093/jbcr/irz060 
  2. Agra, L. C., Ferro, J. N. S., Barbosa, F. T., & Barreto, E. (2015). Triterpenes with healing activity: A systematic review. Journal of Dermatological Treatment, 26(5), 465–470. https://doi.org/10.3109/09546634.2015.1021663 
  3. Beg, S., Hasan, H., Hussain, M. S., Swain, S., & Barkat, M. (2011). Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. Pharmacognosy Reviews/Bioinformatics Trends/Pharmacognosy Review, 5(10), 120. https://doi.org/10.4103/0973-7847.91102 
  4. Benzie, I. F., & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 
  5. Chavan, J. J., Gaikwad, N. B., Kshirsagar, P. R., & Dixit, G. B. (2013). Total phenolics, flavonoids, and antioxidant properties of three Ceropegia species from Western Ghats of India. South African Journal of Botany, 88, 273–277. https://doi.org/10.1016/j.sajb.2013.08.007 
  6. Chowdhury, A., Azam, S., Jainul, M. A., Faruq, K. O., & Islam, A. (2014). Antibacterial activities and in vitro anti-inflammatory (membrane stability) properties of methanolic extracts of gardenia coronaria leaves. International Journal of Microbiology, 2014, 1–5. https://doi.org/10.1155/2014/410935 
  7. Dasgupta, S., Pandya, M., & Patel, N. (2021). Study on antioxidant activities of some less-utilized edible fruits. In Book Publisher International (a part of SCIENCEDOMAIN International) (pp. 24–32). https://doi.org/10.9734/bpi/tipr/v5/9589d 
  8. Em, S. (2024). Exploring experimental research: methodologies, designs, and applications across disciplines. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4801767 
  9. Fetse, J., Kyekyeku, J., Dueve, E., & Mensah, K. (2014). Wound healing activity of total alkaloidal extract of the root bark of Alstonia boonei (Apocynaceae). British Journal of Pharmaceutical Research, 4(23), 2642–2652. https://doi.org/10.9734/bjpr/2014/13952 
  10. Guchu, B. M., Machocho, A. K., Mwihia, S. K., & Ngugi, M. P. (2020a). In vitro antioxidant activities of methanolic extracts of Caesalpinia volkensii Harms, Vernonia lasiopus O. Hoffm., and Acacia hockii de Wild. Evidence-based Complementary and Alternative Medicine, 2020(1). https://doi.org/10.1155/2020/3586268 
  11. Guo, S., & DiPietro, L. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 219–229. https://doi.org/10.1177/0022034509359125 
  12. Kaptaner İğci, B., & Aytaç, Z. (2020). An investigation on the in vitro wound healing activity and phytochemical composition of Hypericum pseudolaeve n. Robson is growing in Turkey. Turkish Journal of Pharmaceutical Sciences, 17(6), 610–619. https://doi.org/10.4274/tjps.galenos.2019.80037 
  13. Kirbag, S., Erecevit, P., Zengin, F., & Guvenc, A. (2013). Antimicrobial activities of some <i>Euphorbia</i> species. African Journal of Traditional Complementary and Alternative Medicines, 10(5). https://doi.org/10.4314/ajtcam.v10i5.13 
  14. Knothe, G., Razon, L. F., & De Castro, M. E. G. (2017). Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties. Biofuels, 10(2), 239–243. https://doi.org/10.1080/17597269.2017.1309856 
  15. Kumarasinghe, N., Dharmadeva, S., Galgamuwa, L., & Prasadinie, C. (2018). In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU (an International Quarterly Journal of Research in Ayurveda), 39(4), 239. https://doi.org/10.4103/ayu.ayu_27_18 
  16. Lalhminghlui, K., & Jagetia, G. C. (2018). Evaluation of the free-radical scavenging and antioxidant activities of chilauni, Schima wallichii Korth in vitro. Future Science OA, 4(2). https://doi.org/10.4155/fsoa-2017-0086 
  17. Liao, X., Xu, H., Feng, P., Wang, Y., & Huang, J. (2018). Evaluation of the environment on polyphenols and flavonoids in Oxalis corymbosa extracts as a potential source of antioxidants. IOP Conference Series Earth and Environmental Science, 170, 052034. https://doi.org/10.1088/1755-1315/170/5/052034
  18. Liu Hongshan (). Study on the components of the roots of the white tree. (Thesis. JingyiUniversity) Taiwan PhD and Master’s Thesis Knowledge Value-Added system. https://hdl.handle.net/11296/342d9u.
  19. Lukić, M., Lukić, I., & Moslavac, T. (2021). Sterols and triterpene diols in virgin olive oil: A comprehensive review on their properties and significance, emphasizing the influence of variety and ripening degree. Horticulturae, 7(11), 493. https://doi.org/10.3390/horticulturae7110493 
  20. Madushan, R., Vidanarachchi, J. K., Prasanna, P., Werellagama, S., & Priyashantha, H. (2021). Use of natural plant extracts as a novel microbiological quality indicator in raw milk: An alternative for the resazurin dye reduction method. LWT, 144, 111221. https://doi.org/10.1016/j.lwt.2021.111221 
  21. Miean, K. H., & Mohamed, S. (2001). Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. Journal of Agricultural and Food Chemistry, 49(6), 3106–3112. https://doi.org/10.1021/jf000892m 
  22. Mohammed, T. K., Aqel, N., & Al-Dujaili, E. A. S. (2020). Antimicrobial activity of liquid residues of Cymbopogon citratus oil extracts. Journal of Physics Conference Series, 1660(1), 012006. https://doi.org/10.1088/1742-6596/1660/1/012006 
  23. Nunan, R., Harding, K. G., & Martin, P. (2014). Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Disease Models & Mechanisms, 7(11), 1205–1213. https://doi.org/10.1242/dmm.016782 
  24. Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J., Chen, S., Corpe, C., Dutta, A., Dutta, S. K., & Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18–35. https://doi.org/10.1080/07315724.2003.10719272 
  25. Pantelidis, G., Vasilakakis, M., Manganaris, G., & Diamantidis, G. (2006). Antioxidant capacity, phenol, anthocyanin, and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries, and Cornelian cherries. Food Chemistry, 102(3), 777–783. https://doi.org/10.1016/j.foodchem.2006.06.021 
  26. Philippines Wound Care Market Statistics & Forecast 2032. (n.d.-a). https://tinyurl.com/ycy8bjah 
  27. Razmavar, S., Abdulla, M. A., Ismail, S. B., & Hassandarvish, P. (2014). Antibacterial activity of leaf extracts of Baekaea frutescens against methicillin-resistant Staphylococcus aureus. BioMed Research International, 2014, 1–5. https://doi.org/10.1155/2014/521287
  28. Republic of the Philippines- National Parks Development Committee, 2023. Alim. https://npdc.gov.ph/alim/       
  29. Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42(4), 321–324. https://doi.org/10.1016/j.ymeth.2007.01.006 
  30. Silva, K., & Sirasa, M. (2016). Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chemistry, 238, 203–208. https://doi.org/10.1016/j.foodchem.2016.08.102 
  31. Su, X., Liu, X., Wang, S., Li, B., Pan, T., Liu, D., Wang, F., Diao, Y., & Li, K. (2016). Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns, 43(4), 830–838. https://doi.org/10.1016/j.burns.2016.10.010
  32. Sumalapao, D. P., Macaranas, I., Notarte, K. R., Ver, A. M., Pastrana, A., & Chua, F. (2020). An epidemiological report on the burden and trend of injuries in the Philippines from 2011 to 2018. Journal of Acute Disease, 9(5), 200. https://doi.org/10.4103/2221-6189.291284 
  33. Szerlauth, A., Muráth, S., Viski, S., & Szilagyi, I. (2019). Radical scavenging activity of plant extracts from improved processing. Heliyon, 5(11), e02763. https://doi.org/10.1016/j.heliyon.2019.e02763 
  34. Teh, C. H., Nazni, W. A., Nurulhusna, A. H., Norazah, A., & Lee, H. L. (2017). Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiology, 17(1). https://doi.org/10.1186/s12866-017-0936-3 
  35. Trease, G. & Evans, W. (2002). Pharmacognosy (15th ed.), Saunders Publishers, London, 42–393.
  36. Uduak, A. E., & Kola, K. A. (n.d.). Antimicrobial activities of some euphorbiaceae plants used in the traditional medicine of Akwa Ibom State, Nigeria. OpenSIUC. https://opensiuc.lib.siu.edu/ebl/vol2010/iss6/2/ 
  37. Wallace, H. A., Basehore, B. M., & Zito, P. M. (2023, June 12). Wound healing phases. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK470443/ 
  38. Yesmin, S., Paul, A., Naz, T., Rahman, A. B. M. A., Akhter, S. F., Wahed, M. I. I., Emran, T. B., & Siddiqui, S. A. (2020). Membrane stabilization is a mechanism for the anti-inflammatory activity of Choi’s ethanolic root extract (Piper chaba). Clinical Phytoscience, 6(1). https://doi.org/10.1186/s40816-020-00207-7.
  39. Zulkefli, N., Zahari, C. N. M. C., Sayuti, N. H., Kamarudin, A. A., Saad, N., Hamezah, H. S., Bunawan, H., Baharum, S. N., Mediani, A., Ahmed, Q. U., Ismail, A. F. H., & Sarian, M. N. (2023). Flavonoids as potential wound-healing molecules: emphasis on pathways perspective. International Journal of Molecular Sciences, 24(5), 4607. https://doi.org/10.3390/ijms24054607