HomeAnnals of Tropical Researchvol. 47 no. 1 (2025)

Phytochemical extraction and in vitro UV/H2O2 photolysis induced DNA damage protection activity potential of Cogon Grass (Imperata cylindrica (L.) P. Beauv.) ground and aerial parts extracts

Lee Andrew L. Gonzales

 

Abstract:

Cogon grass (Imperata cylindrica (L.)P.Beauv.), a globally known invasive grass, has been studied for its application in DNA protective activity. However, most studies only utilized aerial cogon parts leaving the ground parts understudied. This study aimed to compare both ground and aerial cogon phytochemical extracts and its potential protective activity against damage to pUC19 plasmid DNA induced by reactive oxygen species. The total phytochemical analysis showed that the fermented leaf powder showed the highest phenolic and flavonoid content while chloroform root macerate had the lowest yield. Fermented root samples and fermentation control flavonoids were enzymatically hydrolyzed resulting in higher phenolic content. The DNA damage protection assay of the extracts was conducted by photolyzing the UV/H O system to produce radical oxygen species 2 2 inflicting DNA fragmentation. The scored bands showed that all chloroform extracts exhibited DNA damage protective activity. Among the fermented extracts, only fermented leaf macerate exhibited positive protective activity while fermented root samples showed excessive DNA damage, and fermented leaf powder with slight DNA damage. The results imply the potential of cogon grass extracts to be developed into cancer-preventive products and apoptotic regulators to minimize cancer proliferation.



References:

  1. Abu, F., Mat Taib, C. N., Mohd Moklas, M. A., & Mohd Akhir, S. (2017). Antioxidant properties of crude extract, partition extract, and fermented medium of Dendrobium sabin flower. Evidence-Based Complementary and Alternative Medicine, 2017(1), 2907219. https://doi.org/10.1155/2017/2907219
  2. Adebo, O. A., & Medina-Meza, I.G. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4), 927. https://doi.org/10.3390/molecules25040927
  3. Adebo, O. A., & Gabriela Medina-Meza, I. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules, 25(4), 927. https://doi.org/10.3390/molecules25040927
  4. Akbal, F., & Nur Onar, A. (2003). Photocatalytic Degradation of Phenol. Environmental Monitoring and Assessment, 83(3), 295-302. https://doi.org/10. 1023/A:1022666322436
  5. Cui, X., Liao, J., Liu, H., Tang, W., Tie, C., Tian, S., & Li, Y. (2023). Adsorption of phenols from aqueous solution with a pH-sensitive surfactant-modified bentonite. Separations, 10(10), 523. https://doi.org/10.3390/separations10100523
  6. De Montijo-Prieto, S., Razola-Díaz, M.C., Barbieri, F., Tabanelli, G., Gardini, F., Jiménez-Valera, M., Ruiz-Bravo, A., Verardo, V., & Gómez-Caravaca, A. Μ. (2023). Impact of lactic acid bacteria fermentation on phenolic compounds and antioxidant activity of avocado leaf extracts. Antioxidants, 12(2), 298. https://doi.org/10.3390/antiox12020298
  7. Estrella, M., Lu, A. L., & Lasin, S. (2020). Antimutagenic Potential of Cogon (Imperata cylindrica) Methanolic Leaf Extract in Irradiated Human Male Peripheral Blood Lymphocytes [Research, Philippine Science HighSchool]. https://www.researchgate.net/publication/351108056_Antimutagenic_Poten tial_of_Cogon_Imperata_cylindrica_Methanolic_Leaf_Extract_in_Irradiated_H uman_Male_Peripheral_Blood_Lymphocytes
  8. Haminiuk, C. W. I., Plata-Oviedo, M. S. V., de Mattos, G., Carpes, S. T., & Branco, I. G. (2014). Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. Journal of Food Science and Technology, 51(10), 2862-2866. https://doi.org/10.1007/s13197-012-0759-z
  9. Hernandez, L., Espinosa, J.C., Fernandez-Gonzalez, M. & Briones, A. (2003). β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. International Journal of Food Microbiology, 80(2), 171-176. https://doi.org/10.1016/S0168-1605(02)00149-6
  10. Indriyanti, R. A., Ariyanto, E. F., Usman, H. A., Effendy, R. R., & Dhianawaty, D. (2022). Quantification of total polyphenols and flavonoids, antioxidant activity, and Sinensetin and Imperatorin contents of Imperata cylindrica root ethanol extract. Pharmacognosy Journal, 14(4), 327-337. https://doi.org/10.5530/pj.2022.14. 103
  11. Jaradat, N., Hawash, M., & Dass, G. (2021). Phytochemical analysis, in-vitro anti-proliferative, anti-oxidant, anti-diabetic, and anti-obesity activities of Rumex rothschildianus Aarons. Extracts. BMC Complementary Medicine and Therapies, 21(1), 107. https://doi.org/10.1186/s12906-021-03282-6
  12. Jung, Y-K., & Shin, D. (2021). Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications. Molecules, 26(5), 1454. https://doi.org/10.3390/molecules26051454
  13. Kaur, P., Purewal, S. S., Sandhu, K. S., & Kaur, M. (2019). DNA damage protection: An excellent application of bioactive compounds. Bioresources and Bioprocessing, 6(2). https://doi.org/10.1186/s40643-019-0237-9
  14. Keshava, R., Muniyappa, N., & Gope, R. (2020). Bioactivity guided fractionation and elucidation of anti-cancer properties of Imperata cylindrica leaf extracts. Asian Pacific Journal of Cancer Prevention, 21(3), 707-714. https://doi.org/10.31557 /APJCP.2020.21.3.707
  15. Kim, T-H., Truong, V-L., & Jeong, W-S. (2022). Phytochemical composition and antioxidant and anti-inflammatory activities of Ligularia fischeri turcz: A comparison between leaf and root extracts. Plants, 11(21), 3005. https://doi.org/10.3390/plants11213005
  16. Lalthanpuii, P.B., Zarzokimi, & Lalchhandama, K. (2018). Some phytochemical analyses of different extracts of the cogon grass Imperata cylindrica from Mizoram, India. Science Vision, 18(4), 120-124. https://doi.org/10.33493/scivis. 18.04.03
  17. Li, Q., Chang, X., Guo, R., Wang, Q., & Guo, X. (2019). Dynamic effects of fermentation on phytochemical composition and antioxidant properties of wampee (Clausena lansium (Lour.) Skeel) leaves. Food Science & Nutrition, 7(1), 76-85. https://doi.org/10.1002/fsn3.795
  18. Manalo, C.A.M., Arguelles, J.A.P., Bendaña, E.M., Comia, A.F.M., Ribao, M.R.B., & Dumaoal, O.S.R. (2020). In vitro antioxidant and DNA damage inhibition activity of ethanolic extract of Araucaria heterophylla (Salisb.) Franco (Norfolk Island pine). The Steth, 14, 31-45. https://research.lpubatangas.edu.ph/the-steth-vol-14-2020/
  19. Metsopkeng, C.S., Nougang, M.E., Nana, P A., Arfao, A.T., Bahebeck, P.N., Djimeli, C.L., Eheth, J.S., Ewoti, O.V.N., Moungang, L.M., Agbor, G. A., Perrière, F., Sime-Ngando, T., & Nola, M. (2020). Comparative study of Moringa stenopetala root and leaf extracts against the bacteria Staphyloccocus aureus strain from aquatic environment. Scientific African, 10, e00549. https://doi.org/10.1016/j.sciaf.2020.000549
  20. Sari, K.R.P., Ikawati, Z., Danarti, R., & Hertiani, T. (2023). Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arabian Journal of Chemistry, 16(9), 105003. https://doi.org/10.1016 /j.arabjc.2023.105003
  21. Schrader, T. J. (2016). Mutagens. In Encyclopedia of Food and Health (pp. 20-28). Elsevier. https://doi.org/10.1016/8978-0-12-384947-2.00476-1
  22. Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4(1), S359-S367. https://doi.org/10.12980/APJTB.4.2014C1030
  23. Singla, R.K., Dubey, A.K., Garg, A., Sharma, R.K., Fiorino, M., Ameen, S.M., Haddad, M.A., & Al-Hiary, M. (2019). Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International, 102(5), 1397-1400. https://doi.org/10.5740/jaoacint.19-0133
  24. Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. https://doi.org/10.3390/nu2121231
  25. Verma, K., Shrivastava, D., & Kumar, G. (2015). Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. Journal of Taibah University for Science, 9(1), 34-40. https://doi.org/10. 1016/j.jtusci.2014.07.001
  26. VSU, Department of Biotechnology. (2024). [Google Maps]. Google; Google. https://www.google.com/maps/place/10%C2%B044'50.9%22N+124%C2%B 047’31.8%22E/@10.7474047,124.7921791,53m/data=!3m1!1e3!4m4!3m3!8 m2!3d10.74746!4d124.792163?entry=ttu
  27. WHO. (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer Yan Kwok, A.H., Wang, Y., & Ho, W.S. (2016). Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. Phytomedicine, 23(5), 558-565. https://doi.org/10.1016/j.phymed.2016.02.015
  28. Yogo, K., Murayama, C., Hirayama, R., Matsumoto, K., Nakanishi, I., Ishiyama, H., & Yasuda, H. (2021). Protective effects of amino acids on plasmid DNA damage induced by therapeutic carbon ions. Radiation Research, 196(2), 197-203. https://doi.org/10.1667/RADE-21-00033.1