HomeScientific Augustinianvol. 14 no. 1 (2023)

Antibacterial Activity of the Ethanolic Extract of Himag (Eupatorium triplinerve) Leaves Using Thin Layer Chromatography (TLC) Bioautography Assay

Allan Marc Lena | Eric Justin Blancaflor | Klint Jun Ganancial | Kate Dominique Sinoro | Eula Marie Meliton | Mary Krishelle Nuñez | Mary Sol Pagulong | Andrea Dell Penuela | Shaine Mae Pillado | Margie Reginio | Wyen Salvador | Charlyn Grace San Agustin | Mariel Franchee Sorianosos | Mary Grace Tababa | Lorie Grace Trestiza | Bob Therese Vega | Christine Anne Veloso

Discipline: Pharmacology

 

Abstract:

Medicinal plants play a vital role in traditional remedies, particularly in rural areas, where they are used to treat various ailments. Eupatorium triplinerve (Himag), a perennial herb from the Asteraceae family, is known for its rich chemical composition, including polyphenols, flavonoids, terpenes, essential oils, and sesquiterpene lactones, which contribute to its therapeutic and antibacterial properties. However, the potential toxicity of some medicinal plants underscores the importance of evaluating their safety and efficacy. This study investigates the antibacterial activity and cytotoxicity of E. triplinerve leaves. An ethanolic extract was prepared and concentrated using a rotary evaporator. The antibacterial activity was assessed using Thin Layer Chromatography (TLC) Bioautography with a hexane-ethyl acetate solvent system. This method employs resazurin dye to identify specific compounds on the chromatogram that exhibit antibacterial activity against Gram (+) methicillin-resistant Staphylococcus aureus. The polarity of the solvent system, chosen based on the compounds of interest and the nature of the biological assay, was non-polar. The TLC Bioautography revealed significant antibacterial activity at a concentration of 20 μg/spot, with distinct blue spots under UV light at 254 nm and 365 nm wavelengths, indicating the presence of antibacterial compounds. Flavonoids, identified as polar compounds, were responsible for the observed antibacterial activity, known for their ability to inhibit bacterial growth. In conclusion, this study demonstrates the strong antibacterial activity of E. triplinerve leaves, with flavonoids playing a key role in bacterial inhibition. Although the results suggest promising therapeutic potential, further research is needed to assess safety and fully explore its medicinal benefits.



References:

  1. Ahlam, R., Ameerah, S., Ahmed, B. A., Hamed, A., Khalifa, S. M., Nadea, A., ... & Zuhur Rajab, A. (2019). Thin Layer Chromatography (TLC) and Phytochemical Analysis of Moringa oleifera Methanol, Ethanol, Water and Ethyl Acetate      Extract. Saudi Journal of Medical Pharmaceutical Sciences, 5(10), 817-20. https://doi.org/10.36348/sjmps.2019.v05i10.002
  2. Azzam, A., Khaled, H., Mosa, M., Refaey, N., AlSaifi, M., Elsisi, S., ... & Mohsen, M. (2023). Epidemiology of clinically isolated                     methicillin-resistant Staphylococcus aureus (MRSA) and its susceptibility to linezolid and vancomycin in Egypt: a systematic review with meta-analysis. BMC Infectious Diseases, 23(1), 263. https://doi.org/10.1186/s12879-023-08202-2
  3. Bhattacharyya, M., Easmin, S., Pal, K., Sahu, R., Nandi, G., Sahariah, B. J., ... & Dua, T. K. (2023). Ayapana triplinervis: An updated review of traditional uses, phytochemistry, and pharmacological activities. Pharmacological         Research-Natural Products, 1, 100002. https://doi.org/10.1016/j.prenap.2023.100002
  4. Cheriyan, B. V., & Sheik, M. (2019). An Ethnobotanical Review. Asian Journal of             Pharmaceutical Research, 9(3). https://doi.org/10.5958/2231-5691.2019.00032.7
  5. Choma, I. M., & Jesionek, W. (2015). TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2(2), 225-238. https://doi.org/10.3390/chromatography2020225
  6. Ezung, B., Kalita, R. D., & Paul, A. (2023). INVESTIGATION ON BIOCHEMICAL AND  ANTIMICROBIAL POTENTIAL OF  EUPATORIUM ADENOPHORUM, A                     MEDICINAL PLANT SPECIES FROM WOKHA NAGALAND, INDIA. DOI: 10.20959/wjpr202319-30041
  7. Fernezelian, D., Gence, L., Bringart, M., Veeren, B., Bedoui, Y., Meilhac, O., ... & Diotel, N. (2023). Ayapana triplinervis Vahl: Potential toxicity and therapeutic effects assessed in a zebrafish model. Phytomedicine Plus, 3(1), 100384. https://doi.org/10.1016/j.phyplu.2022.100384
  8. Ginovyan, M., Ayvazyan, A., Nikoyan, A., Tumanyan, L., & Trchounian, A. (2020).                       Phytochemical screening and detection of  antibacterial components from crude extracts of some Armenian herbs using TLC-bioautographic technique. Current Microbiology, 77, 1223-1232. https://doi.org/10.1007/s00284-020-01929-0
  9. Gou, J., Lu, Y., Xie, M., Tang, X., Chen, L., Zhao, J., ... & Wang, H. (2023). Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria.  Heliyon, 9(4). DOI: 10.1016/j.heliyon.2023.e14985
  10. Khanal, A., Sulochan, G. C., Gaire, A., Khanal, A., Estrada, R., Ghimire, R., & Panthee, S. (2021). Methicillin-resistant Staphylococcus aureus in Nepal: A systematic review and meta-analysis. International Journal of Infectious Diseases, 103, 48-55. https://doi.org/10.1016/j.ijid.2020.11.152
  11. Lawal, A. M., Abdullahi, R., Ibrahim, M. S., Kurfi, M. Y., Khalid, A., & Nuhu, M. (2019).                Phytochemical analysis and thin layer  chromatography profiling of crude extracts from Senna occidentalis (leaves). Journal of  Biotechnology and Biomedical Science, 2(1),      12-21. https://doi.org/10.14302/issn.2576-6694. jbbs-19-2791
  12. Li, Z. (2018). A review of Staphylococcus aureus and the emergence of drug-resistant problem. Advances in Microbiology, 8(1), 65-76. https://doi.org/10.4236/aim.2018.81006
  13. Liang, M., Ge, X., Xua, H., Ma, K., Zhang, W., Zan, Y., ... & Hua, X. (2022). Phytochemicals with activity against methicillin-resistant                      Staphylococcus aureus. Phytomedicine, 100, 154073. https://doi.org/10.1016/j.phymed.2022. 154073
  14. Lobato Rodrigues, A. B., Martins, R. L., Rabelo, É. D. M., Tomazi, R., Santos, L. L., Brandão, L. B., ... & de Almeida, S. S. M. D. S. (2021).           Development of nano-emulsions based on      Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PloS one, 16(7), e0254225. https://doi.org/10.1371/journal.pone. 0254225
  15. Maddiboyina, B., Roy, H., Ramaiah, M., Sarvesh, C. N., Kosuru, S. H., Nakkala, R. K., & Nayak, B. S. (2023). Methicillin-resistant Staphylococcus        aureus: novel treatment approach breakthroughs. Bulletin of the National Research Centre, 47(1), 95. https://doi.org/10.1186/s42269-023-00851-6
  16. Matos Lopes, T. R., de Oliveira, F. R., Malheiros, F. F., de Andrade, M. A., Monteiro, M. C., & Baetas Gonçalves, A. C. (2015). Antimicrobial               bioassay-guided fractionation of a methanol        extract of Eupatorium triplinerve. Pharmaceutical Biology, 53(6), 897-903. https://doi.org/10.3109/13880209.2014.948634
  17. Nandhini, P., Kumar, P., Mickymaray, S., Alothaim, A. S., Somasundaram, J., & Rajan, M. (2022). Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: a           review. Antibiotics, 11(5), 606. https://doi.org/10.3390/antibiotics11050606
  18. Rodrigues, A. B. L., de Matos, J. L., Martins, R. L., de Menezes Ra, É., Brandão, L. B., Santos, L. L., ... & de Oliveira, F. R. (2022).                                   Ethnopharmacological Use, Secondary                 Metabolites and Biological Activity of Ayapana triplinervis (VAHL) RM King and H. Rob.: A Systematic Review. Pharmacognosy Reviews, 16 (32), 70-73. DOI: 10.5530/phrev.2022.16.10
  19. Rolnik, A., & Olas, B. (2021). The plants of the Asteraceae family as agents in the protection of human health. International journal of molecular sciences, 22(6), 3009. DOI:10.3390/ijms22063009
  20. Soma, J., Manjunath, Y. S., & Mohan, G. V. R. (2018). In vitro Antimicrobial Effectiveness of Selected Medicinal Plants Extract against Pathogenic Organisms. Int. J. Curr. Microbiol. App. Sci, 7(7), 2211-2219. https://doi.org/10.20546/ijcmas.2018.707.259
  21. Sugumar, N., Karthikeyan, S., & Gowdhami, T. (2015). Chemical composition and antimicrobial activity of essential oil from Eupatorium triplinerve Vahl. aerial parts. International Letters of Natural Sciences, 4. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-3adfb54e-4f8e-4bae-bef9-c051e9757a40
  22. Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., ... & Fowler Jr, V. G. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203-218. https://doi.org/10.1038/s41579-018-0147-4
  23. Urbain, A., & Simões-Pires, C. A. (2020). Thin-layer chromatography for the detection and analysis of bioactive natural products. Encyclopedia of  Analytical Chemistry; American Cancer Society: Atlanta, GA, USA, 1-29. https://doi.org/10.1002/9780470027318.a9907.pub2
  24. Valle Jr, D. L., Puzon, J. J. M., Cabrera, E. C., &   Rivera, W. L. (2016). Thin layer                                 chromatography‐bioautography and gas  chromatography‐mass spectrometry of                     antimicrobial leaf extracts from Philippine Piper betle L. against multidrug‐resistant bacteria.  Evidence‐Based Complementary and Alternative Medicine, 2016(1), 4976791. https://doi.org/10.1155/2016/4976791
  25. Viet Huong, D. T., Giang, P. M., & Trang, V. M. (2020). Coumarins and Polar Constituents from Eupatorium triplinerve and Evaluation of Their α‐Glucosidase Inhibitory Activity. Journal of Chemistry, 2020(1), 8945063. https://doi.org/10.1155/2020/8945063
  26. Wang, M., Zhang, Y., Wang, R., Wang, Z., Yang, B., & Kuang, H. (2021). An evolving technology that integrates classical methods with continuous  technological developments: Thin-layer  chromatography bioautography. Molecules, 26(15), 4647. https://doi.org/10.3390/molecules26154647
  27. Zheng-Qiang, L., Jun, N., Xin-Yu, Z., Chao-Zhi, Z., Rui, A., Xu, Y., ... & Xiao-Yan, Y. (2024). Antioxidant and anti-inflammatory function of Eupatorium adenophora Spreng leaves (EASL) on human intestinal Caco-2 cells treated with tert-butyl hydroperoxide. Scientific Reports, 14(1), 10509. https://doi.org/10.1038/s41598-024-61012-7