Antibacterial Activity of the Ethanolic Extract of Himag (Eupatorium triplinerve) Leaves Using Thin Layer Chromatography (TLC) Bioautography Assay
Allan Marc Lena | Eric Justin Blancaflor | Klint Jun Ganancial | Kate Dominique Sinoro | Eula Marie Meliton | Mary Krishelle Nuñez | Mary Sol Pagulong | Andrea Dell Penuela | Shaine Mae Pillado | Margie Reginio | Wyen Salvador | Charlyn Grace San Agustin | Mariel Franchee Sorianosos | Mary Grace Tababa | Lorie Grace Trestiza | Bob Therese Vega | Christine Anne Veloso
Discipline: Pharmacology
Abstract:
Medicinal plants play a vital role in traditional remedies, particularly in rural areas, where they are used to treat
various ailments. Eupatorium triplinerve (Himag), a perennial herb from the Asteraceae family, is known for its
rich chemical composition, including polyphenols, flavonoids, terpenes, essential oils, and sesquiterpene lactones,
which contribute to its therapeutic and antibacterial properties. However, the potential toxicity of some medicinal
plants underscores the importance of evaluating their safety and efficacy. This study investigates the antibacterial
activity and cytotoxicity of E. triplinerve leaves. An ethanolic extract was prepared and concentrated using a rotary
evaporator. The antibacterial activity was assessed using Thin Layer Chromatography (TLC) Bioautography with a
hexane-ethyl acetate solvent system. This method employs resazurin dye to identify specific compounds on the
chromatogram that exhibit antibacterial activity against Gram (+) methicillin-resistant Staphylococcus aureus. The
polarity of the solvent system, chosen based on the compounds of interest and the nature of the biological assay,
was non-polar. The TLC Bioautography revealed significant antibacterial activity at a concentration of 20 μg/spot,
with distinct blue spots under UV light at 254 nm and 365 nm wavelengths, indicating the presence of antibacterial
compounds. Flavonoids, identified as polar compounds, were responsible for the observed antibacterial activity,
known for their ability to inhibit bacterial growth. In conclusion, this study demonstrates the strong antibacterial
activity of E. triplinerve leaves, with flavonoids playing a key role in bacterial inhibition. Although the results
suggest promising therapeutic potential, further research is needed to assess safety and fully explore its medicinal
benefits.
References:
- Ahlam, R., Ameerah, S., Ahmed, B. A., Hamed, A., Khalifa, S. M., Nadea, A., ... & Zuhur Rajab, A. (2019). Thin Layer Chromatography (TLC) and Phytochemical Analysis of Moringa oleifera Methanol, Ethanol, Water and Ethyl Acetate Extract. Saudi Journal of Medical Pharmaceutical Sciences, 5(10), 817-20. https://doi.org/10.36348/sjmps.2019.v05i10.002
- Azzam, A., Khaled, H., Mosa, M., Refaey, N., AlSaifi, M., Elsisi, S., ... & Mohsen, M. (2023). Epidemiology of clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and its susceptibility to linezolid and vancomycin in Egypt: a systematic review with meta-analysis. BMC Infectious Diseases, 23(1), 263. https://doi.org/10.1186/s12879-023-08202-2
- Bhattacharyya, M., Easmin, S., Pal, K., Sahu, R., Nandi, G., Sahariah, B. J., ... & Dua, T. K. (2023). Ayapana triplinervis: An updated review of traditional uses, phytochemistry, and pharmacological activities. Pharmacological Research-Natural Products, 1, 100002. https://doi.org/10.1016/j.prenap.2023.100002
- Cheriyan, B. V., & Sheik, M. (2019). An Ethnobotanical Review. Asian Journal of Pharmaceutical Research, 9(3). https://doi.org/10.5958/2231-5691.2019.00032.7
- Choma, I. M., & Jesionek, W. (2015). TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography, 2(2), 225-238. https://doi.org/10.3390/chromatography2020225
- Ezung, B., Kalita, R. D., & Paul, A. (2023). INVESTIGATION ON BIOCHEMICAL AND ANTIMICROBIAL POTENTIAL OF EUPATORIUM ADENOPHORUM, A MEDICINAL PLANT SPECIES FROM WOKHA NAGALAND, INDIA. DOI: 10.20959/wjpr202319-30041
- Fernezelian, D., Gence, L., Bringart, M., Veeren, B., Bedoui, Y., Meilhac, O., ... & Diotel, N. (2023). Ayapana triplinervis Vahl: Potential toxicity and therapeutic effects assessed in a zebrafish model. Phytomedicine Plus, 3(1), 100384. https://doi.org/10.1016/j.phyplu.2022.100384
- Ginovyan, M., Ayvazyan, A., Nikoyan, A., Tumanyan, L., & Trchounian, A. (2020). Phytochemical screening and detection of antibacterial components from crude extracts of some Armenian herbs using TLC-bioautographic technique. Current Microbiology, 77, 1223-1232. https://doi.org/10.1007/s00284-020-01929-0
- Gou, J., Lu, Y., Xie, M., Tang, X., Chen, L., Zhao, J., ... & Wang, H. (2023). Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria. Heliyon, 9(4). DOI: 10.1016/j.heliyon.2023.e14985
- Khanal, A., Sulochan, G. C., Gaire, A., Khanal, A., Estrada, R., Ghimire, R., & Panthee, S. (2021). Methicillin-resistant Staphylococcus aureus in Nepal: A systematic review and meta-analysis. International Journal of Infectious Diseases, 103, 48-55. https://doi.org/10.1016/j.ijid.2020.11.152
- Lawal, A. M., Abdullahi, R., Ibrahim, M. S., Kurfi, M. Y., Khalid, A., & Nuhu, M. (2019). Phytochemical analysis and thin layer chromatography profiling of crude extracts from Senna occidentalis (leaves). Journal of Biotechnology and Biomedical Science, 2(1), 12-21. https://doi.org/10.14302/issn.2576-6694. jbbs-19-2791
- Li, Z. (2018). A review of Staphylococcus aureus and the emergence of drug-resistant problem. Advances in Microbiology, 8(1), 65-76. https://doi.org/10.4236/aim.2018.81006
- Liang, M., Ge, X., Xua, H., Ma, K., Zhang, W., Zan, Y., ... & Hua, X. (2022). Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. Phytomedicine, 100, 154073. https://doi.org/10.1016/j.phymed.2022. 154073
- Lobato Rodrigues, A. B., Martins, R. L., Rabelo, É. D. M., Tomazi, R., Santos, L. L., Brandão, L. B., ... & de Almeida, S. S. M. D. S. (2021). Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PloS one, 16(7), e0254225. https://doi.org/10.1371/journal.pone. 0254225
- Maddiboyina, B., Roy, H., Ramaiah, M., Sarvesh, C. N., Kosuru, S. H., Nakkala, R. K., & Nayak, B. S. (2023). Methicillin-resistant Staphylococcus aureus: novel treatment approach breakthroughs. Bulletin of the National Research Centre, 47(1), 95. https://doi.org/10.1186/s42269-023-00851-6
- Matos Lopes, T. R., de Oliveira, F. R., Malheiros, F. F., de Andrade, M. A., Monteiro, M. C., & Baetas Gonçalves, A. C. (2015). Antimicrobial bioassay-guided fractionation of a methanol extract of Eupatorium triplinerve. Pharmaceutical Biology, 53(6), 897-903. https://doi.org/10.3109/13880209.2014.948634
- Nandhini, P., Kumar, P., Mickymaray, S., Alothaim, A. S., Somasundaram, J., & Rajan, M. (2022). Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotics, 11(5), 606. https://doi.org/10.3390/antibiotics11050606
- Rodrigues, A. B. L., de Matos, J. L., Martins, R. L., de Menezes Ra, É., Brandão, L. B., Santos, L. L., ... & de Oliveira, F. R. (2022). Ethnopharmacological Use, Secondary Metabolites and Biological Activity of Ayapana triplinervis (VAHL) RM King and H. Rob.: A Systematic Review. Pharmacognosy Reviews, 16 (32), 70-73. DOI: 10.5530/phrev.2022.16.10
- Rolnik, A., & Olas, B. (2021). The plants of the Asteraceae family as agents in the protection of human health. International journal of molecular sciences, 22(6), 3009. DOI:10.3390/ijms22063009
- Soma, J., Manjunath, Y. S., & Mohan, G. V. R. (2018). In vitro Antimicrobial Effectiveness of Selected Medicinal Plants Extract against Pathogenic Organisms. Int. J. Curr. Microbiol. App. Sci, 7(7), 2211-2219. https://doi.org/10.20546/ijcmas.2018.707.259
- Sugumar, N., Karthikeyan, S., & Gowdhami, T. (2015). Chemical composition and antimicrobial activity of essential oil from Eupatorium triplinerve Vahl. aerial parts. International Letters of Natural Sciences, 4. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-3adfb54e-4f8e-4bae-bef9-c051e9757a40
- Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., ... & Fowler Jr, V. G. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203-218. https://doi.org/10.1038/s41579-018-0147-4
- Urbain, A., & Simões-Pires, C. A. (2020). Thin-layer chromatography for the detection and analysis of bioactive natural products. Encyclopedia of Analytical Chemistry; American Cancer Society: Atlanta, GA, USA, 1-29. https://doi.org/10.1002/9780470027318.a9907.pub2
- Valle Jr, D. L., Puzon, J. J. M., Cabrera, E. C., & Rivera, W. L. (2016). Thin layer chromatography‐bioautography and gas chromatography‐mass spectrometry of antimicrobial leaf extracts from Philippine Piper betle L. against multidrug‐resistant bacteria. Evidence‐Based Complementary and Alternative Medicine, 2016(1), 4976791. https://doi.org/10.1155/2016/4976791
- Viet Huong, D. T., Giang, P. M., & Trang, V. M. (2020). Coumarins and Polar Constituents from Eupatorium triplinerve and Evaluation of Their α‐Glucosidase Inhibitory Activity. Journal of Chemistry, 2020(1), 8945063. https://doi.org/10.1155/2020/8945063
- Wang, M., Zhang, Y., Wang, R., Wang, Z., Yang, B., & Kuang, H. (2021). An evolving technology that integrates classical methods with continuous technological developments: Thin-layer chromatography bioautography. Molecules, 26(15), 4647. https://doi.org/10.3390/molecules26154647
- Zheng-Qiang, L., Jun, N., Xin-Yu, Z., Chao-Zhi, Z., Rui, A., Xu, Y., ... & Xiao-Yan, Y. (2024). Antioxidant and anti-inflammatory function of Eupatorium adenophora Spreng leaves (EASL) on human intestinal Caco-2 cells treated with tert-butyl hydroperoxide. Scientific Reports, 14(1), 10509. https://doi.org/10.1038/s41598-024-61012-7
Full Text:
Note: Kindly Login or Register to gain access to this article.