HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 6 (2025)

Multi-Objective Taguchi Optimization of Electrospinning Parameters for the Development of Poly-(vinyl alcohol)/Waste Wooden Utensil Nanocellulose/Phycocyanin Electrospun Fibers

Tabitha P. Vergel De Dios | Mia A. Luares | Will Arboleda | Myiesha Dane C. Calibara | John Ray C. Estrellado

Discipline: Education

 

Abstract:

The lack of widespread commercial repurposing and recycling of waste wooden utensils contribute to pollution and toxic waste in the environ-ment. This study aims to develop a sustainable method of repurposing waste wooden utensils into mechanically-robust electrospun fibers. Waste wooden utensil nanocellulose (WUNC) was produced using del-ignification, bleaching, and hydrolysis. Polymer mixtures consisting of 10% poly-vinyl alcohol (PVA), WUNC, and the pigment-protein com-plex phycocyanin (PC) were prepared for electrospinning following the Taguchi robust optimization design. Three parameters, namely WUNC addition (0.1, 0.2, 0.3 g./100 g), PC addition (0.1, 0.2, 0.3 g./100 g), and electrospinning voltage (25, 27.5, 30 kV), were varied to optimize load-ing capacity and tensile strength. Results showed WUNC addition of 0.2 g./100 g., PC addition of 0.3 g./100 g., and voltage of 25 kV optimal for loading capacity, with PC addition having the highest contribution at 44.54%. WUNC addition of 0.3 g./100 g., PC addition of 0.1 g./100 g., and voltage of 30 kV optimized tensile strength, with WUNC addition having the highest contribution at 57.99%. Produced WUNC resulted in a nanocellulose yield of approximately 16.81% with FTIR spectra re-vealing the removal of lignin and hemicellulose and increase of cellu-lose crystallinity. FTIR spectra for the electrospun fibers indicate suc-cessful integration of all components in the electrospun fibers. SEM analyses confirmed the creation of electrospun fibers within the na-nosize range. Results confirmed the viability to extract nanocellulose and synthesize fibers from waste wooden utensils for enhancement of electrospun mats quality for biomedical applications, and offer new knowledge on wood-based nanomaterials.



References:

  1. Abbas, J. A., Said, I. A., Mohamed, M. A., Yasin, S. A., Ali, Z. A., & Ahmed, I. H. (2018). Electrospinning of polyethylene ter-ephthalate (PET) nanofibers: optimiza-tion study using taguchi design of ex-periment. IOP Conference Series Mate-rials Science and Engineering, 454, 012130. https://doi.org/10.1088/1757-899x/454/1/012130
  2. Asada, C., Kita, A., Sasaki, C., & Nakamura, Y. (2011). Ethanol production from dis-posable aspen chopsticks using
  3. delignification pretreatments. Carbo-hydrate Polymers, 85(1), 196–200. https://doi.org/10.1016/j.carbpol.2011.02.020
  4. Bennett, A., & Bogorad, L. (1973). Complemen-tary chromatic adaptation in a filamen-tous blue-green alga. The Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419.
  5. Bösiger, P., Richard, I. M. T., Le Gat, L., Michen, B., Schubert, M., Rossi, R. M., & Fortu-nato, G. (2018). Application of re-sponse surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydrate Polymers, 186, 122–131. https://doi.org/10.1016/j.carbpol.2018.01.038
  6. Bülbül, E. Ö., Okur, M. E., Okur, N. Ü., & Siafa-ka, P. I. (2022). Traditional and ad-vanced wound dressings: physical characterization and desirable proper-ties for wound healing. In Elsevier eBooks (pp. 19–50). https://doi.org/10.1016/b978-0-323-90514-5.00020-1
  7. Buliga, D., Mocanu, A., Rusen, E., Diacon, A., Toader, G., Brincoveanu, O., Călinescu, I., & Boscornea, A. C. (2024). Phycocy-anin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. Marine Drugs, 22(10), 434. https://doi.org/10.3390/md22100434
  8. Chandra, J. C. S., George, N., & Narayanankutty, S. K. (2016). Isolation and characteri-zation of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Pol-ymers, 142, 158-166. https://doi.org/10.1016/j.carbpol.2016.01.015
  9. Chang, C., Chen, C., Yang, C., Chen, Y., Huang, M., Chang, C., Shie, J., Yuan, M., Chen, Y., Ho, C., Li, K., & Yang, M. (2016). Conversion of waste bamboo chop-sticks to bio-oil via catalytic hydro-thermal liquefaction using K2CO3. Sus-tainable Environment Research, 26(6), 262–267. https://doi.org/10.1016/j.serj.2016.08.002
  10. Charoensopa, K., et al. (2024). Extraction of nanocellulose from the residue of sug-arcane bagasse fiber for Anti-Staphylococcus aureus (S. aureus) ap-plication. Polymers, 16(11), 1612. https://doi.org/10.3390/polym16111612
  11. Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 178, 111490. https://doi.org/10.1016/j.eurpolymj.2022.111490
  12. Chiang, K., Chen, Y., Tsai, W., Lu, C., & Chien, K. (2012). Effect of calcium based catalyst on production of synthesis gas in gasi-fication of waste bamboo chopsticks. International Journal of Hydrogen En-ergy, 37(18), 13737–13745. https://doi.org/10.1016/j.ijhydene.2012.03.042
  13. Chieng, B., Lee, S., Ibrahim, N., Then, Y., & Loo, Y. (2017). Isolation and Characteriza-tion of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber. Polymers, 9(8), 355. https://doi.org/10.3390/polym9080355
  14. Couret, L., Irle, M., Belloncle, C., & Cathala, B. (2017). Extraction and characteriza-tion of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose, 24(5), 2125–2137. https://doi.org/10.1007/s10570-017-1252-7
  15. Das, S. K., Chakraborty, S., Naskar, S., & Ra-jabalaya, R. (2021). Techniques and methods used for the fabrication of bi-onanocomposites. In Elsevier eBooks (pp. 17–43). https://doi.org/10.1016/b978-0-12-821280-6.00007-6
  16. Dranseikienė, D., Balčiūnaitė-Murzienė, G., Karosienė, J., Morudov, D., Juodžiukynienė, N., Hudz, N.,
  17. Gerbutavičienė, R. J., & Savickienė, N. (2022). Cyano-Phycocyanin: Mecha-nisms of action on human skin and fu-ture perspectives in medicine. Plants, 11(9), 1249. https://doi.org/10.3390/plants11091249
  18. Duong, T. (2020). Some statistical techniques applied to engineering mechanics problems. Vietnam Journal of Science and Technology. 57. 10. 10.15625/2525-2518/57/6A/14006
  19. Fraley, S., Zalewski, J., Oom, M., & Terrien, B. (2023, March 11). 14.1: Design of Ex-periments via Taguchi Methods - Or-thogonal Arrays. Engineering Libre-Texts. https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays
  20. Gao, M., Yang, Z., Liang, W., Ao, T., & Chen, W. (2023). Recent advanced freestanding pseudocapacitive electrodes for effi-cient capacitive deionization. Separa-tion and Purification Technology, 324, 124577. https://doi.org/10.1016/j.seppur.2023.124577
  21. Garcia, J., et al. (2022). Effect of solvent and additives on the electrospinnability of BSA solutions. Colloids and Surfaces B Biointerfaces, 217, 112683. https://doi.org/10.1016/j.colsurfb.2022.112683
  22. Gefen, A. (2021). The role of the thermal con-ductivity of dressings in prevention and treatment of wounds. Wounds Interna-tional, 12(1), 18–24. https://woundsinternational.com/wp-con-tent/uploads/2023/02/a0ce5d0a6b4faaaa7d441791c8fdb544.pdf
  23. Haider, A., et al. (2018). A comprehensive re-view summarizing the effect of elec-trospinning parameters and potential applications of nanofibers in biomedi-cal and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015
  24. Hajieghrary, F., Ghanbarzadeh, B., Pezeshki, A., Dadashi, S., & Falcone, P. M. (2024). Development of hybrid Electrospun Nanofibers: Improving effects of cellu-lose nanofibers (CNFs) on electrospin-nability of gelatin. Foods, 13(13), 2114. https://doi.org/10.3390/foods13132114
  25. Hamzaçebi, C. (2020). Taguchi method as a robust design tool. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.94908
  26. Huang, S., Zhou, L., Li, M., Wu, Q., & Zhou, D. (2017). Cellulose nanocrystals (CNCs) from corn stalk: Activation energy analysis. Materials, 10(1), 80. https://doi.org/10.3390/ma10010080
  27. Irmak, N. Ş. O. (2020). Taguchi’s design for op-timization of phycocyanin extraction from Arthrospira (Spirulina) platensis. GSC Biological and Pharmaceutical Sciences, 11(3), 006–013. https://doi.org/10.30574/gscbps.2020.11.3.0158
  28. Isogai, A. (2013). Wood nanocelluloses: fun-damentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449–459. https://doi.org/10.1007/s10086-013-1365-z
  29. Jelle, B. P., Rüther, P., & Hovde, P. J. (2012). Investigations of Accelerated Climate Aged wood Substrates by Fourier Transform Infrared Material Charac-terization. Advances in Materials Sci-ence and Engineering, 2012, 1–6. https://doi.org/10.1155/2012/827471
  30. Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., & Xu, Y. (2021). Preparation of elec-trospun polyvinyl Alco-hol/Nanocellulose composite film and evaluation of its biomedical perfor-mance. Gels, 7(4), 223. https://doi.org/10.3390/gels7040223
  31. Jiyas, N., Sasidharan, I., & Kumar, K. B. (2023). Tensile properties and morphological insights into chemically modified fibres of Pseudoxytenanthera bamboo spe-cies as sustainable reinforcements in composites. Advances in Bamboo Sci-ence, 5, 100050. https://doi.org/10.1016/j.bamboo.2023.100050
  32. Kandala, A. V. U., Solomon, D. G., & Arulraj, J. J. (2022). Advantages of Taguchi method compared to response surface meth-odology for achieving the best surface finish in wire electrical discharge ma-chining (WEDM). Journal of Mechani-cal Engineering, 19(1), 185-199. https://myjurnal.mohe.gov.my/public/article-view.php?id=181178
  33. Karazi, S. M., Moradi, M., & Benyounis, K. Y. (2019). Statistical and Numerical Ap-proaches for modeling and optimizing laser micromachining Process-Review. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-803581-8.11650-9
  34. Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., & Gałęski, A. (2018). Recent develop-ments in nanocellulose-based biode-gradable polymers, thermoplastic pol-ymers, and porous nanocomposites. Progress in Polymer Science, 87, 197–227. https://doi.org/10.1016/j.progpolymsci.2018.07.008
  35. Kaur, P., Sharma, N., Munagala, M., Rajkhowa, R., Aallardyce, B., Shastri, Y., & Agrawal, R. (2021). Nanocellulose: Re-sources, Physio-Chemical properties, current uses and future applications. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.747329
  36. Khandual, S., Sanchez, E. O. L., Andrews, H. E., & De La Rosa, J. D. P. (2021). Phycocy-anin content and nutritional profile of Arthrospira platensis from Mexico: ef-ficient extraction process and stability evaluation of phycocyanin. BMC Chem-istry, 15(1). https://doi.org/10.1186/s13065-021-00746-1
  37. Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radi-olytic approach. Beilstein Journal of Nanotechnology, 6, 529–536. https://doi.org/10.3762/bjnano.6.55
  38. Kim, K. D., Han, D. N., & Kim, H. T. (2004). Op-timization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver par-ticles by chemical reduction method. Chemical Engineering Journal, 104(1–3), 55–61. https://doi.org/10.1016/j.cej.2004.08.003
  39. Kondor, A., Santmarti, A., Mautner, A., Wil-liams, D., Bismarck, A., & Lee, K. (2021). On the BET surface area of nanocellulose determined using volu-metric, gravimetric and chromato-graphic adsorption methods. Frontiers in Chemical Engineering, 3. https://doi.org/10.3389/fceng.2021.738995
  40. Krishna, P. S., Sudha, S., Reddy, K. A., Al-Dhabaan, F. A., Meher, N., Prakasham, R., & Charya, M. S. (2017). Studies on wound healing potential of red pig-ment isolated from marine Bacterium Vibrio sp. Saudi Journal of Biological Sciences, 26(4), 723–729. https://doi.org/10.1016/j.sjbs.2017.11.035
  41. Kumar, P., Miller, K., Kermanshahi-Pour, A., Brar, S. K., Beims, R. F., & Xu, C. C. (2022). Nanocrystalline cellulose de-rived from spruce wood: Influence of process parameters. International Journal of Biological Macromolecules, 221, 426–434. https://doi.org/10.1016/j.ijbiomac.2022.09.017
  42. Lee, H., Yamaguchi, K., Nagaishi, T., Murai, M., Kim, M., Wei, K., Zhang, K., & Kim, I. S. (2017). Enhancement of mechanical properties of polymeric nanofibers by controlling crystallization behavior us-ing a simple freezing/thawing process. RSC Advances, 7(69), 43994–44000. https://doi.org/10.1039/c7ra06545k
  43. Leonés, A., Salaris, V., Mujica-Garcia, A., Ar-rieta, M. P., Lopez, D., Lieblich, M., Kenny, J. M., & Peponi, L. (2021). PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules, 26(16), 4925. https://doi.org/10.3390/molecules26164925
  44. Li, N., Shi, C., Zhang, Z., Wang, H., & Liu, Y. (2019). A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 178, 107490. https://doi.org/10.1016/j.compositesb.2019.107490
  45. Liao, J., Nie, J., Sun, B., Jiao, T., Zhang, M., & Song, S. (2024). A cellulose composite filter with multi-stage pores had high filtration efficiency, low pressure drop, and degradable properties. Chemical Engineering Journal, 482, 148908. https://doi.org/10.1016/j.cej.2024.148908
  46. Liao, H., Wu, Y., Wu, M., Zhan, X., & Liu, H. (2011). Aligned electrospun cellulose fibers reinforced epoxy resin compo-site films with high visible light trans-mittance. Cellulose, 19(1), 111–119. https://doi.org/10.1007/s10570-011-9604-1
  47. Lin, K., Enomae, T., & Chang, F. (2019). Cellu-lose Nanocrystal Isolation from Hard-wood Pulp using Various Hydrolysis Conditions. Molecules, 24(20), 3724. https://doi.org/10.3390/molecules24203724
  48. Luraghi, A., Peri, F., & Moroni, L. (2021). Elec-trospinning for drug delivery applica-tions: A review. Journal of Controlled Release, 334, 463-484. https://doi.org/10.1016/j.jconrel.2021.03.033
  49. Martins, R., Mouro, C., Pontes, R., Nunes, J., & Gouveia, I. (2023). Natural Deep Eutec-tic Solvent Extraction of Bioactive Pigments from Spirulina platensis and Electrospinning Ability Assessment. Polymers, 15(6), 1574. https://doi.org/10.3390/polym15061574
  50. Meng, Y., Wang, X., Wu, Z., Wang, S., & Young, T. M. (2015). Optimization of cellulose nanofibrils carbon aerogel fabrication using response surface methodology. European Polymer Journal, 73, 137–148. https://doi.org/10.1016/j.eurpolymj.2015.10.007
  51. Mishra, R. K., Ha, S. K., Verma, K., & Tiwari, S. K. (2018). Recent progress in selected bio-nanomaterials and their engineer-ing applications: An overview. Journal of Science: Advanced Materials and Devices, 3(3), 263-288. https://doi.org/10.1016/j.jsamd.2018.05.003
  52. Mohammadi, M., Mohammadi, N., & Me-hdipour-Ataei, S. (2020). On the prepa-ration of thin nanofibers of polysulfone polyelectrolyte for improving conduc-tivity of proton-exchange membranes by electrospinning: Taguchi design, re-sponse surface methodology, and ge-netic algorithm. International Journal of Hydrogen Energy, 45(58), 34110–34124. https://doi.org/10.1016/j.ijhydene.2020.09.125
  53. Muraleedharan, M. N., Karnaouri, A., Piatkova, M., Ruiz-Caldas, M., Matsakas, L., Liu, B., Rova, U., Christakopoulos, P., & Mathew, A. P. (2021). Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic activity of LPMO and endoglucanases. International Journal of Biological Macromolecules, 183, 101–109. https://doi.org/10.1016/j.ijbiomac.2021.04.136
  54. Novareza, O., Tama, I. P., Setyanto, N. W., Kusuma, L., Nirmalasari, P. C. (2017). APPLICATION OF TAGUCHI EXPERI-MENT FOR THE COMPOSITION OPTI-MIZATION OF RAW MATERIAL IN MAKING OF TERRAZO CHAIR. Journal of Environmental Engineering and Sus-tainable Technology, 4(2), 103-110. doi:http://dx.doi.org/10.21776/ub.jeest.2017.004.02.6
  55. O’Connor, R., Cahill, P., & McGuinness, G. (2021). Effect of electrospinning pa-rameters on the mechanical and mor-phological characteristics of small di-ameter PCL tissue engineered blood vessel scaffolds having distinct micro and nano fibre populations – A DOE approach. Polymer Testing, 96, 107119. https://doi.org/10.1016/j.polymertesting.2021.107119
  56. Oon, S. (2022). The environmental impact of disposable chopsticks. FoodUnfolded. https://www.foodunfolded.com/article/the-environmental-impact-of-disposable-chopsticks
  57. Pai, C., Boyce, M. C., & Rutledge, G. C. (2009). Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromole-cules, 42(6), 2102–2114. https://doi.org/10.1021/ma802529h
  58. Patel, D. K., Dutta, S. D., Hexiu, J., Ganguly, K., & Lim, K.-T. (2020). Bioactive electro-spun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrys-tals for bone tissue engineering. Inter-national Journal of Biological Macro-molecules, 162, 1429–1441. https://doi.org/10.1016/j.ijbiomac.2020.07.246
  59. Paulett, K., Brayer, W. A., Hatch, K., Kalous, T., Sewell, J., Liavitskaya, T., Vyazovkin, S., Liu, F., Lukáš, D., & Stanishevsky, A. (2017). Effect of nanocrystalline cellu-lose addition on needleless alternating current electrospinning and properties of nanofibrous polyacrylonitrile mesh-es. Journal of Applied Polymer Science, 135(5). https://doi.org/10.1002/app.45772
  60. Pauly, H. M., Kelly, D. J., Popat, K. C., Trujillo, N. A., Dunne, N. J., McCarthy, H. O., & Donahue, T. L. H. (2016). Mechanical properties and cellular response of novel electrospun nanofibers for liga-ment tissue engineering: Effects of ori-entation and geometry. Journal of the Mechanical Behavior of Biomedical Ma-terials/Journal of Mechanical Behavior of Biomedical Materials, 61, 258–270. https://doi.org/10.1016/j.jmbbm.2016.03.022
  61. Raju, V., Revathiswaran, R., Subramanian, K. S., Parthiban, K. T., Chandrakumar, K., Anoop, E. V., & Chirayil, C. J. (2023). Isolation and characterization of nano-cellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-26600-5
  62. Ribeiro, A. S., Costa, S. M., Ferreira, D. P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C., & Fanguei-ro, R. (2021). Chitosan/nanocellulose electrospun fibers with enhanced anti-bacterial and antifungal activity for wound dressing applications. Reactive and Functional Polymers/Reactive & Functional Polymers, 159, 104808. https://doi.org/10.1016/j.reactfunctpolym.2020.104808
  63. Saraswat, P., Singh, S., Prasad, M., Misra, R., Rajput, V. D., & Ranjan, R. (2023). Ap-plications of bio-based nanomaterials in environment and agriculture: A re-view on recent progresses. Hybrid Ad-vances, 4, 100097. https://doi.org/10.1016/j.hybadv.2023.100097
  64. Shanmugam, A., Sigamani, S., Venkatachalam, H., Jayaraman, J., & Ramamurthy, D. (2017). Antibacterial activity of ex-tracted phycocyanin from Oscillatoria sp. Journal of Applied Pharmaceutical Science, 7(3), 62-67. https://doi.org/10.7324/japs.2017.70310
  65. Sihag, S. S., Pal, J., & Yadav, M. (2022). Extrac-tion and Characterization of Nanocel-lulose from Wheat Straw: Facile Ap-proach. Journal of Water and Environ-mental Nanotechnology, 7(3), 317-331. https://doi.org/10.22090/jwent.2022.03.007
  66. Singh, H., Verma, A. K., Trivedi, A. K., & Gupta, M. (2023). Characterization of nanocel-lulose isolated from bamboo fibers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.300
  67. Sulaiman, O., Ghani, N. S., Rafatullah, M., Hashim, R., & Ahmad, A. (2011). Sorp-tion Equilibrium and Thermodynamic Studies of Zinc (II) Ions from Aqueous Solutions by Bamboo Sawdust. Journal of Dispersion Science and Technology, 32(4), 583–590. https://doi.org/10.1080/01932691003757322
  68. Sun, Y., Cheng, S., Lu, W., Wang, Y., Zhang, P., & Yao, Q. (2019). Electrospun fibers and their application in drug controlled re-lease, biological dressings, tissue re-pair, and enzyme immobilization. RSC Advances, 9(44), 25712–25729. https://doi.org/10.1039/c9ra05012d
  69. Suzuki, A., Sasaki, C., Asada, C., & Nakamura, Y. (2018). Production of cellulose nano-fibers from Aspen and Bode chopsticks using a high temperature and high pressure steam treatment combined with milling. Carbohydrate Polymers, 194, 303–310. https://doi.org/10.1016/j.carbpol.2018.04.047
  70. Trushina, D. B., Borodina, T. N., Belyakov, S., & Antipina, M. N. (2022). Calcium car-bonate vaterite particles for drug de-livery: Advances and challenges. Mate-rials Today Advances, 14, 100214. https://doi.org/10.1016/j.mtadv.2022.100214
  71. Valizadeh, A., & Farkhani, S. M. (2013). Elec-trospinning and electrospun nano-fibres. IET Nanobiotechnology, 8(2), 83–92. https://doi.org/10.1049/iet-nbt.2012.0040
  72. Velázquez, M. E., et al. (2022). Nanocellulose extracted from Paraguayan residual agro-industrial biomass: Extraction process, physicochemical and morpho-logical characterization. Sustainability, 14(18), 11386. https://doi.org/10.3390/su141811386
  73. Vishnoi, Y., Trivedi, A. K., Gupta, M., Singh, H., Rangappa, S. M., & Siengchin, S. (2023). Extraction of nano-crystalline cellulose for development of aerogel: Structural, morphological and antibac-terial analysis. Heliyon, 10(1), e23846. https://doi.org/10.1016/j.heliyon.2023.e23846
  74. Wahib, S. A., Da’na, D. A., & Al-Ghouti, M. A. (2022). Insight into the extraction and characterization of cellulose nanocrys-tals from date pits. Arabian Journal of Chemistry, 15(3), 103650. https://doi.org/10.1016/j.arabjc.2021.103650
  75. Wang, D., Cheng, W., Yue, Y., Xuan, L., Ni, X., & Han, G. (2018). Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Al-cohol Nanofibrous Films and their Ex-ploration to Metal Ions Adsorption. Polymers, 10(10), 1046. https://doi.org/10.3390/polym10101046
  76. Wang, T., & Zhao, Y. (2020). Optimization of bleaching process for cellulose extrac-tion from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydrate Pol-ymers, 253, 117225. https://doi.org/10.1016/j.carbpol.2020.117225
  77. Wang, X., Cheng, W., Wang, D., Ni, X., & Han, G. (2019). Electrospun polyvinylidene fluoride-based fibrous nanocomposite membranes reinforced by cellulose nanocrystals for efficient separation of water-in-oil emulsions. Journal of Membrane Science, 575, 71–79. https://doi.org/10.1016/j.memsci.2018.12.057
  78. Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by ac-id hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Se-ries Materials Science and Engineering, 107, 012045. https://doi.org/10.1088/1757-899x/107/1/012045
  79. Xu, W., Xin, B., & Yang, X. (2020). Carboniza-tion of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hy-brid membranes and its mechanism. Cellulose, 27(7), 3789–3804. https://doi.org/10.1007/s10570-020-03006-y
  80. Xu, Y., Wu, Z., Li, A., Chen, N., Rao, J., & Zeng, Q. (2024). Nanocellulose composite films in food packaging materials: a review. Polymers, 16(3), 423. https://doi.org/10.3390/polym16030423
  81. Zarina, S., & Ahmad, I. (2014). Biodegradable Composite Films based on κ-carrageenan Reinforced by Cellulose Nanocrystal from Kenaf Fibers. BioRe-sources, 10(1). https://doi.org/10.15376/biores.10.1.256-271
  82. Zhang, H., Fu, S., & Chen, Y. (2020). Basic un-derstanding of the color distinction of lignin and the proper selection of lig-nin in color-depended utilizations. In-ternational Journal of Biological Mac-romolecules, 147, 607–615. https://doi.org/10.1016/j.ijbiomac.2020.01.105
  83. Zhang, H., Zhang, F., & Huang, Q. (2017). High-ly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydro-thermal carbonization. RSC Advances, 7(10), 5790–5799. https://doi.org/10.1039/c6ra27782a
  84. Zhang, Q., Young, T. M., Harper, D. P., Liles, T., & Wang, S. (2021). Optimization of electrospun poly(vinyl alco-hol)/cellulose nanocrystals composite nanofibrous filter fabrication using re-sponse surface methodology. Carbohy-drate Polymer Technologies and Appli-cations, 2, 100120. https://doi.org/10.1016/j.carpta.2021.100120
  85. Zhang, Y., Zhang, C., & Wang, Y. (2021). Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. Nanoscale Advances, 3(21), 6040–6047. https://doi.org/10.1039/d1na00508a