HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 6 (2025)

Box-Behnken Design-Based Optimization of Treatment Parameters for Soluble Reactive Phosphorus Removal of Synthetic Wastewater using Immobilized Spirulina platensis Beads

Sean Andre D. Calajate | Francis Edric M. Robles | Maria Francesca I. Rojas | Tristan Josef A. Tolentino | Angela Nicole S. Masongsong | John Ray C. Estrellado

Discipline: Education

 

Abstract:

Soluble reactive phosphorus (SRP), a bioavailable phosphorus form, contributes to over-eutrophication by stimulating uncontrolled algal growth. This study aims to determine the optimum treatment parame-ters for the SRP removal from synthetic wastewater using the alginate-immobilized cyanobacteria Spirulina platensis. S. platensis was immo-bilized in alginate beads with varying alginate concentrations (2.5%, 3%, and 3.5% w/v), and subjected to varying operation time (1, 2, and 3 days), and bead dosage (1.5, 2, and 2.5 beads/mL) for SRP removal using Box-Behnken experimental design. Resulting model indicated a strong predictive relationship with R2 = 0.9253 and p = 0.0212. Main effects of bead dosage (p = 0.01372), its quadratic effect (p = 0.01643), and its interaction with alginate concentration (p = 0.00465) were found to be statistically significant. Predicted optimum parameters (2.5% w/v alginate, 3 days, and 1.5 beads/mL) were validated and re-sulted in a lower SRP removal of 92.80 ± 0.73% with a percent error of 5.22% relative to a predicted SRP removal of 97.91%. Extrapolation of the prediction model to 100% outside the experimental region was verified resulting in SRP removal of 97.39 ± 0.08% with a percent error of 2.61% was achieved by adjusting the operation time to 3.4 days. The study shows promising potential of immobilized S. platensis beads in addressing over-eutrophication through significant phosphorus reduc-tion.



References:

  1. Abdel Hameed, M. S. (2007). Effect of algal density in bead, bead size, and bead con-centrations on wastewater nutrient re-moval. African Journal of Biotechnology, 6(10), 1185-1191. https://www.ajol.info/index.php/ajb/article/view/57139
  2. Banerjee, S., Tiwade, P. B., Sambhav, K., Banerjee, C., & Bhaumik, S. K. (2019). Ef-fect of alginate concentration in wastewater nutrient removal using algi-nate-immobilized microalgae beads: Up-take kinetics and adsorption studies. Bio-chemical Engineering Journal, 149, 107241. https://doi.org/10.1016/j.bej.2019.107241
  3. Bouabidi, Z. B., El-Naas, M. H., & Zhang, Z. (2018). Immobilization of microbial cells for the biotreatment of wastewater: A re-view. Environmental Chemistry Letters, 17(1), 241–257. https://doi.org/10.1007/s10311-018-0795-7
  4. Brandão, B. C. S., Oliveira, C. Y. B., Santos, E. P., Abreu, J. L. D., Oliveira, D. W. S., Cabral da Silva, S. M. B., & Gálvez, A. O. (2023). Mi-croalgae-based domestic wastewater treatment: A review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. Environmental Monitoring and As-sessment, 195(1384). https://doi.org/10.1007/s10661-023-12031-w
  5. Calvo-López, A., Ymbern, O., Puyol, M., & Alonso-Chamarro, J. (2021). Soluble reac-tive phosphorus determination in wastewater treatment plants by automat-ic microanalyzers. Talanta, 221, 121508. https://doi.org/10.1016/j.talanta.2020.121508
  6. Chai, W. S., Tan, W. G., Munawaroh, H. S. H., Gupta, V. K., Ho, S. H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater bio-treatment: A review. Environmental Pol-lution, 269, 116236. https://doi.org/10.1016/j.envpol.2020.116236
  7. Chaieb, K., Kouidhi, B., Ayed, L., Hosawi, S. B., Abdulhakim, J. A., Hajri, A., & Altayb, H. N. (2023). Enhanced textile dye removal from wastewater using natural bio-sorbent and Shewanella algae B29: Ap-plication of Box Behnken design and ge-nomic approach. Bioresource Technology, 374, 128755. https://doi.org/10.1016/j.biortech.2023.128755
  8. Chen, X., Lee, Y., Yuan, T., Lei, Z., Adachi, Y., Zhang, Z., Lin, Y., & Van Loosdrecht, M. C. (2022). A review on recovery of extracel-lular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges. Bioresource Technology, 363, 127854. https://doi.org/10.1016/j.biortech.2022.127854
  9. Cruz, I., Bashan, Y., Hernàndez-Carmona, G., & De-Bashan, L. E. (2013). Biological dete-rioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied Microbiology and Biotechnology, 97(22), 9847–9858. https://doi.org/10.1007/s00253-013-4703-6
  10. de-Bashan, L. E., & Bashan, Y. (2010). Immobi-lized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101(6), 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043
  11. Department of Environment and Natural Re-sources. (2021). Water quality guidelines and general effluent standards of 2016 (DENR Administrative Order No. 2021-XX, Sec. 5.3). https://www.denr.gov.ph/
  12. Domini, M., Abbà, A., & Bertanza, G. (2022). Analysis of the variation of costs for sew-age sludge transport, recovery, and dis-posal in Northern Italy: A recent survey (2015–2021). Water Science & Technolo-gy, 85(4), 1167–1175. https://doi.org/10.2166/wst.2022.040
  13. El-Sheekh, M., Morsi, H., & Hassan, L. (2020). Growth Enhancement of Spirulina platen-sis through Optimization of Media and Ni-trogen Sources. Egyptian Journal of Botany, 0(0), 0. https://doi.org/10.21608/ejbo.2020.27927.1487
  14. Eroglu, E., Smith, S. M., & Raston, C. L. (2015). Application of various immobilization techniques for algal bioprocesses. In Bi-omass and Biofuels from Microalgae (pp. 19–44). Springer. https://doi.org/10.1007/978-3-319-16640-7_2
  15. Ghaeni, M., & Roomiani, L. (2016). Effects of Spirulina, microalgae. Journal of Ad-vanced Agricultural Technologies, 3(2), 114-117. https://doi.org/10.18178/joaat.3.2.114-117
  16. Gichana, Z., Liti, D., Drexler, S., Zollitsch, W., Meulenbroek, P., Wakibia, J., Ogello, E., Akoll, P., & Waidbacher, H. (2019). Ef-fects of aerated and non-aerated biofil-ters on effluent water treatment from a small-scale recirculating aquaculture sys-tem for Nile tilapia (Oreochromis nilot-icus L.). Die Bodenkultur Journal of Land Management Food and Environment, 70(4), 209–219. https://doi.org/10.2478/boku-2019-0019
  17. Halim, A. A., & Haron, W. N. a. W. (2021). Im-mobilized Microalgae using Alginate for Wastewater Treatment. Pertanika Jour-nal of Science & Technology, 29(3). https://doi.org/10.47836/pjst.29.3.34
  18. Hossain, S. M. Z., Alnoaimi, A., Razzak, S. A., Ezuber, H., Al‐Bastaki, N., Safdar, M., Al-kaabi, S., & Hossain, M. M. (2018). Multi-objective optimization of microalgae (Chlorella sp.) growth in a photobioreac-tor using Box‐Behnken design approach. The Canadian Journal of Chemical Engi-neering, 96(9), 1903–1910. https://doi.org/10.1002/cjce.23168
  19. Hossain, S. M. Z., Sultana, N., Jassim, M. S., Coskuner, G., Hazin, L. M., Razzak, S. A., & Hossain, M. M. (2022). Soft-computing modeling and multiresponse optimization for nutrient removal process from munic-ipal wastewater using microalgae. Jour-nal of Water Process Engineering, 45, 102490. https://doi.org/10.1016/j.jwpe.2021.102490
  20. Huno, S. K., Rene, E. R., van Hullebusch, E. D., & Annachhatre, A. P. (2018). Nitrate re-moval from groundwater: a review of natural and engineered processes. Jour-nal of Water Supply: Research and Tech-nology—AQUA, 67(8), 885-902
  21. Karydis, M. (2013). Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST Journal, 11(4), 373–390. https://doi.org/10.30955/gnj.000626
  22. Khatoon, H., Penz, K. P., Banerjee, S., Rahman, M. R., Minhaz, T. M., Islam, Z., Mukta, F. A., Nayma, Z., Sultana, R., & Amira, K. I. (2021). Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresource Technology, 338, 125529. https://doi.org/10.1016/j.biortech.2021.125529
  23. Klokk, T. I., & Melvik, J. E. (2002). Controlling the size of alginate gel beads by use of a high electrostatic potential. Journal of Mi-croencapsulation, 19(4), 415–424. https://doi.org/10.1080/02652040210144234
  24. Lee, B., Ravindra, P., & Chan, E. (2013). Size and shape of calcium alginate beads pro-duced by extrusion dripping. Chemical Engineering & Technology, 36(10), 1627–1642. https://doi.org/10.1002/ceat.201300230
  25. Li, Y., Wu, X., Liu, Y., & Taidi, B. (2024). Immo-bilized microalgae: Principles, processes, and its applications in wastewater treat-ment. World Journal of Microbiology and Biotechnology, 40(150). https://doi.org/10.1007/s11274-024-03930-2
  26. Lin, Y., & Tanaka, S. (2006). Oxygen transfer and mixing in bioreactors: A review. Biochemical Engineering Journal, 30(1), 1-7. https://doi.org/10.1016/j.bej.2005.11.010
  27. Maali, A., Gheshlaghi, R., & Mahdavi, M. A. (2024). Maximizing key biochemical products of Spirulina platensis: optimal light quantities and best harvesting time. OCL, 31, 21. https://doi.org/10.1051/ocl/2024019
  28. Malone, T., & Newton, A. (2020). Effects of nu-trient pollution in marine ecosystems are compounded by human activity. Frontiers in Marine Science. https://phys.org/news/2020-08-effects-nutrient-pollution-marine-ecosystems.html
  29. Molinuevo-Salces, B., Riaño, B., Hernández, D., & García-González, M. C. (2019). Microal-gae and wastewater treatment: Ad-vantages and disadvantages. In M. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 505–533). Springer. https://doi.org/10.1007/978-981-13-2264-8_20
  30. Mollamohammada, S. (2020). Nitrate and herbicides removal from groundwater using immobilized algae (Doctoral disser-tation). University of Nebraska-Lincoln. https://digitalcommons.unl.edu/civilengdiss/154
  31. Mazur, L. P., Cechinel, M. A., De Souza, S. M. U., Boaventura, R. A., & Vilar, V. J. (2018). Brown marine macroalgae as natural cat-ion exchangers for toxic metal removal from industrial wastewaters: A review. Journal of Environmental Management, 223, 215–253. https://doi.org/10.1016/j.jenvman.2018.05.086
  32. Oldenborg, K. A., & Steinman, A. D. (2019). Im-pact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Science of the Total Environ-ment, 650, 1969-1979.
  33. Osman, G. A., Ali, M. S., Kamel, M. M., & Amber, S. G. (2011). The role of Cladophora sp. and Spirulina platensis in the removal of microbial flora in Nile water. New York Science Journal, 4(3), 8–17, 4(3). http://www.sciencepub.net/newyork
  34. Paerl, H. W. (2009). Controlling eutrophication along the freshwater–marine continuum: Dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32(4), 593–601. https://doi.org/10.1007/s12237-009-9158-8
  35. Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). Determination of phosphate. In Elsevier eBooks (pp. 22–25). https://doi.org/10.1016/b978-0-08-030287-4.50015-3
  36. Porkka, T. (2021). Optimization of microalgal immobilization for cultivation in aquacul-ture wastewater (Master’s thesis). Uni-versity of Eastern Finland. https://erepo.uef.fi/items/19c210d8-376e-4ee2-82f2-6071d70371bb
  37. Purev, O., Park, C., Kim, H., Myung, E., Choi, N., & Cho, K. (2023). Spirulina platensis im-mobilized alginate beads for removal of Pb(II) from aqueous solutions. Interna-tional Journal of Environmental Research and Public Health, 20(2), 1106. https://doi.org/10.3390/ijerph20021106
  38. Patnaik, S., Sarkar, R., & Mitra, A. (2001). Algi-nate immobilization of Spirulina platensis for wastewater treatment. Indian journal of experimental biology, 39(8), 824–826. https://pubmed.ncbi.nlm.nih.gov/12018590/
  39. Rajasekaran, C., Ajeesh, C. P. M., Balaji, S., Shalini, M., Siva, R., Das, R., Fulzele, D. P., & Kalaivani, T. (2015). Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak Journal of Sci-ence and Technology (WJST), 13(1), 67–75.https://www.researchgate.net/publication/291699334_Effect_of_Modified_Zarrouk's_Medium_on_Growth_of_Different_Spirulina_Strains
  40. Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanul-lah, I., & Mohammad, A. W. (2022). Car-bon nanotubes-based adsorbents: Prop-erties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process En-gineering, 47, 102815. https://doi.org/10.1016/j.jwpe.2022.102815
  41. Shpigel, M., Neori, A. (2007). Microalgae, Macroalgae, and Bivalves as Biofilters in Land-Based Mariculture in Israel. In: Bert, T.M. (eds) Ecological and Genetic Impli-cations of Aquaculture Activities. Meth-ods and Technologies in Fish Biology and Fisheries, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6148-6_24
  42. Santos, A. F., Mendes, L. S., Alvarenga, P., Gan-do-Ferreira, L. M., & Quina, M. J. (2024). Nutrient Recovery via Struvite Precipita-tion from Wastewater Treatment Plants: Influence of Operating Parameters, Coex-isting Ions, and Seeding. Water, 16(12), 1675. https://doi.org/10.3390/w16121675
  43. Tam, N., & Wong, Y. (2000). Effect of immobi-lized microalgal bead concentrations on wastewater nutrient removal. Environ-mental Pollution, 107(1), 145–151. https://doi.org/10.1016/s0269-7491(99)00118-9
  44. Taqiyyah, A. M., Risjani, Y., Prihanto, A. A., Yanuhar, U., & Fadjar, M. (2022). Effect of Aquaculture Wastewater And Zarrouk in Increasing Biomass, Protein, and Carote-noids levels of Spirulina platensis. Jurnal Ilmiah Perikanan Dan Kelautan. https://doi.org/10.20473/jipk.vi.40822
  45. Velusamy, K., Periyasamy, S., Kumar, P. S., Vo, D. V. N., Sindhu, J., Sneka, D., & Sub-hashini, B. (2021). Advanced techniques to remove phosphates and nitrates from waters: A review. Environmental Chemis-try Letters, 19, 3165–3180. https://link.springer.com/article/10.1007/s10311-021-01239-2
  46. Vonshak, A. (1997). Spirulina platensis arthro-spira. In CRC Press eBooks. https://doi.org/10.1201/9781482272970
  47. Wang, L., Liu, X., Li, Z., Wan, C., & Zhang, Y. (2023). Filamentous aerobic granular sludge: A critical review on its cause, im-pact, control and reuse. Journal of Envi-ronmental Chemical Engineering, 11(3), 110039. https://doi.org/10.1016/j.jece.2023.110039
  48. Xu, S., Li, Z., Yu, S., Chen, Z., Xu, J., Qiu, S., & Ge, S. (2024). Microalgal–bacteria biofilm in wastewater treatment: Advantages, prin-ciples, and establishment. Water, 16(18), 2561. https://doi.org/10.3390/su162411196
  49. Yang, Z., Pei, H., Han, F., Wang, Y., Hou, Q., & Chen, Y. (2018). Effects of air bubble size on algal growth rate and lipid accumula-tion using fine-pore diffuser photobiore-actors. Algal Research, 32, 293–299. https://doi.org/10.1016/j.algal.2018.04.016
  50. You, F., Fan, Y., Tang, L., Liu, X., Jin, C., Zhao, Y., Wang, Y., & Guo, L. (2025). Optimiza-tion of Phaeodactylum tricornutum culti-vation for enhancing mariculture wastewater treatment and high value product recovery using Box–Behnken de-sign. Process Safety and Environmental Protection, 107022. https://doi.org/10.1016/j.psep.2025.107022