HomeJournal of Interdisciplinary Perspectivesvol. 3 no. 8 (2025)

Fourier Transform Infrared Spectroscopy and Gravimetric Analysis of Protein Denaturation in Egg Albumen Treated with Colocasia esculenta L. Schott (Taro) Leaf Extract

Ronald Andrei Castillo | Ariel Ziv A. Dilag | Iyanna Francine R. Mira | Sebastian P. Panganiban | Marcelino G. Gigantone, Jr. | Angelo Albert A. Adan | Thyrene Chelsea V. Alafriz | Yoshabel Chelsea D. Bautista | James Kurt G. Ostria | Carmela Felicia M. Vigilia

Discipline: biosciences (non-specific)

 

Abstract:

One of the leading factors contributing to the development of neurodegenerative disorders like Alzheimer's and Parkinson's disease is protein misfolding. When this occurs, these proteins lose their proper form, leading to dysfunction and aggregation. Limited remedies that focus on symptomatic relief have been developed, thereby leading to plant-derived compounds gaining attention as their potential to stabilize proteins. The study aims to determine taro leaf extract's effect combined with egg albumen on protein structures observed through infrared spectroscopy, evaluating protein structural change and mass measuring for protein denaturation. Researchers compared four concentrations (12.5, 25, 50, and 100%) to diclofenac sodium and distilled water, with all groups containing egg albumen. Only 100% concentration and control groups were analyzed using FT-IR spectra, revealing hydrogen bonding interactions and structural differences by distinct shifts in Amide I bands. Through deconvolution, 100% concentration showed the highest α-helix content, presence of β-sheet, and no random coil signals, revealing preservation of native secondary structure and protein stability in opposite to negative control. The gravimetric analysis further supported increased mass in higher extract concentrations. A one-way ANOVA for gravimetric analysis yielded a p-value of 7.11 × 10^ (-5), indicating significance between groups. Tukey's HSD post hoc test showed significance between 100% and the concentrations (12, 25, and 50%) with p-values of 0.013, 0.016, and 0.017, indicating distinct aggregation caused by 100% compared to the lower concentrations. Moreover, no significant differences were compared to controls with p-values of 0.149 and 0.584 which reinforces the extract's coagulative role rather than its anti-inflammatory effect. Findings suggest that the extract induced protein structural shifts, preventing misfolding and stabilizing the α-helix and β-sheet structures' secondary structures. However, further investigation is needed to explore its role as a coagulative agent and dosage-dependent behavior, providing insights for future therapeutic approaches in protein misfolding conditions.



References:

  1. Alkanli, S. S., Alkanli, N., Ay, A., & Albeniz, I. (2022). CRISPR/CAS9 mediated Therapeutic approach in Huntington’s Disease. Molecular Neurobiology, 60(3), 1486–1498. https://doi.org/10.1007/s12035-022-03150-5
  2. Amer-Sarsour, F., & Ashkenazi, A. (2019). The nucleolus as a proteostasis regulator. Trends in Cell Biology, 29(11), 849–851. https://doi.org/10.1016/j.tcb.2019.08.002
  3. Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1767(9), 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004
  4. Cho, H., & Kang, K. (2017). Effects of taro extract on brain resilience in in vitro Parkinson’s disease model induced by 6-Hydroxydopamine. Journal of Korean Biological Nursing Science, 22(4), 223–231. https://doi.org/10.7586/jkbns.2020.22.4.223
  5. Dabeek, W. M., & Marra, M. V. (2019). Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/10.3390/nu11102288
  6. Dhouafli, Z., Cuanalo-Contreras, K., Hayouni, E. A., Mays, C. E., Soto, C., & Moreno-Gonzalez, I. (2018). Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences, 75(19), 3521–3538. https://doi.org/10.1007/s00018-018-2872-2
  7. Ferdaus, M. J., Chukwu-Munsen, E., Foguel, A., & Da Silva, R. C. (2023). Taro roots: an underexploited root crop. Nutrients, 15(15), 3337. https://doi.org/10.3390/nu15153337
  8. Furlan, L., Barros, C. A., Pereira, G. R., Freitas, M. P., & Tavares, M. F. M. (2007). FTIR studies of denatured and aggregated egg albumen proteins. Analytical Sciences, 23(3), 365–368. https://doi.org/10.2116/analsci.23.365
  9. Gadhave, D. G., Sugandhi, V. V., Jha, S. K., Nangare, S. N., Gupta, G., Singh, S. K., Dua, K., Cho, H., Hansbro, P. M., & Paudel, K. R. (2024). Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Research Reviews, 99, 102357. https://doi.org/10.1016/j.arr.2024.102357
  10. Jafari, S. M., Esfanjani, A. F., Katouzian, I., & Assadpour, E. (2017). Release, characterization, and safety of nanoencapsulated food ingredients. In Elsevier eBooks (pp. 401–453). https://doi.org/10.1016/b978-0-12-809740-3.00010-6
  11. Kebebe, D., Belete, A., & Gebre-Mariam, T. (2012). Evaluation of two olibanum resins as rate controlling matrix forming excipients in oral sustained release tablets. Ethiopian Pharmaceutical Journal, 28(2). https://doi.org/10.4314/epj.v28i2.4
  12. Kumarasinghe, N., Dharmadeva, S., Galgamuwa, L., & Prasadinie, C. (2018). In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU (an International Quarterly Journal of Research in Ayurveda), 39(4), 239. https://doi.org/10.4103/ayu.ayu_27_18
  13. Lad, S. S., Kolhe, S. U., Devade, O. A., Patil, C. N., Nalawade, R. D., & Rode, M. R. (2023). A Review on Medicinal properties of Colocasia esculenta Linn. Research Journal of Pharmacology and Pharmacodynamics, 144–148. https://doi.org/10.52711/2321-5836.2023.00026
  14. Lindawati, N. Y. (2018). DETERMINATION of TOTAL FLAVONOID LEVELS on LEAF STALKS ETHANOL EXTRACT of TARO (Colocasia esculenta [L.] Schott). Jurnal Farmasi (Journal of Pharmacy), 1(1), 58–66. https://doi.org/10.37013/jf.v1i1.65
  15. Liu, L., Klausen, L. H., & Dong, M. (2018). Two-dimensional peptide based functional nanomaterials. Nano Today, 23, 40–58. https://doi.org/10.1016/j.nantod.2018.10.008
  16. M, A., Arumugham, M., I., Ramalingam, K., & S, R. (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of Chitosan Thiocolchicoside-Lauric acid Nanogel. Cureus. https://doi.org/10.7759/cureus.46003
  17. Madhuranga, H. D. T., & Samarakoon, N. A. (2023). In vitro Anti-Inflammatory Egg Albumin Denaturation Assay: An Enhanced Approach. Journal of Natural & Ayurvedic Medicine, 7(3), 000411. Retrieved from. https://medwinpublishers.com/JONAM/in-vitro-anti-inflammatory-egg-albumin-denaturation-assay-an-enhanced-approach.pdf
  18. Majaliwa, N., Kibazohi, O., & Alminger, M. (2025). Fourier Transform Infrared Spectroscopy (FTIR) Probing on Interactions of Proteins with Phenolic Compounds in the East African Highland Banana Pulp at Different Stages of Banana Juice Extraction. International Journal of Biochemistry Research & Review, 34(2), 42–52. https://doi.org/10.9734/ijbcrr/2025/v34i2963
  19. Maurer, M. S., Schwartz, J. H., Gundapaneni, B., Elliott, P. M., Merlini, G., Waddington-Cruz, M., Kristen, A. V., Grogan, M., Witteles, R., Damy, T., Drachman, B. M., Shah, S. J., Hanna, M., Judge, D. P., Barsdorf, A. I., Huber, P., Patterson, T. A., Riley, S., Schumacher, J., . . . Rapezzi, C. (2018). Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. New England Journal of Medicine, 379(11), 1007–1016. https://doi.org/10.1056/nejmoa1805689
  20. Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chemistry, 383, 132406. https://doi.org/10.1016/j.foodchem.2022.132406
  21. Movasaghi, Z., Rehman, S., & Rehman, I. U. (2008). Fourier Transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134–179. https://doi.org/10.1080/05704920701829043
  22. Novak, U., Žerovnik, E., Taler-Verčič, A., Žnidarič, M., Zupančič, B., & Grdadolnik, J. (2023). Amyloid formation of stefin B protein studied by infrared spectroscopy. Frontiers in Bioscience-Landmark, 28(3). https://doi.org/10.31083/j.fbl2803046
  23. Nwaogwugwu, J. C., Uhegbu, F. O., Okereke, S. C., Nosiri, C., I., Amaka, E. N., & Nwamaka, I. J. (2020). Hematological Changes and Antidiabetic Activities of Colocasia esculenta (L.) Schatt Stem Tuber Aqueous Extract in Alloxan Induced Diabetic Rats. Journal of Pharmaceutical Research International, 1–9. https://doi.org/10.9734/jpri/2020/v32i1030487
  24. Onyeaka, H., Passaretti, P., Miri, T., & Al-Sharify, Z. T. (2022). The safety of nanomaterials in food production and packaging. Current Research in Food Science, 5, 763–774. https://doi.org/10.1016/j.crfs.2022.04.005
  25. Panganiban, S. P., Jose, H. D., Vindua, C. O., Camarce, C. D., Castañeda, J. N., Dacanay, J. V. & Ramos, E. D. (2024). The Effect of Colocasia esculenta L. Schott (Taro) Leaf Extract in the Clotting Time and Evaluation of Electrolytes as a Potential Clot Activator. Journal of Interdisciplinary Perspectives, 3(1), 19-26. https://doi.org/10.69569/jip.2024.0558
  26. Ross, C. A., & Tabrizi, S. J. (2010). Huntington’s disease: from molecular pathogenesis to clinical treatment. The Lancet Neurology, 10(1), 83–98. https://doi.org/10.1016/s1474-4422(10)70245-3
  27. Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery, 11(9), 709–730. https://doi.org/10.1038/nrd3802
  28. Shah, Y. A., Saeed, F., Afzaal, M., Waris, N., Ahmad, S., Shoukat, N., & Ateeq, H. (2022). Industrial applications of taro (Colocasia esculenta) as a novel food ingredient: A review. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16951
  29. Sjamsudin, E., Muharty, A., Riawan, L., & Priosoeryanto, B. P. (2021). The efficacy taro leaf extract on wound healing contaminated with Staphylococcus aureus bacteria. Padjadjaran Journal of Dentistry, 33(3), 199. https://doi.org/10.24198/pjd.vol33no3.21325
  30. Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Comyns, K., Richards, M. B., Meng, C., Priestley, B., Fernandez, H. H., Cambi, F., Umbach, D. M., Blair, A., Sandler, D. P., & Langston, J. W. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119(6), 866–872. https://doi.org/10.1289/ehp.1002839
  31. Tosif, M. M., Najda, A., Klepacka, J., Bains, A., Chawla, P., Kumar, A., Sharma, M., Sridhar, K., Gautam, S. P., & Kaushik, R. (2022). A concise review on taro mucilage: extraction techniques, chemical composition, characterization, applications, and health attributes. Polymers, 14(6), 1163. https://doi.org/10.3390/polym14061163
  32. Van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2022). Lecanemab in early Alzheimer’s disease. New England Journal of Medicine, 388(1), 9–21. https://doi.org/10.1056/nejmoa2212948
  33. VanWert, A. (2024, October 23). Diclofenac (Cataflam, Voltaren, others): Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD. WebMD. Retrieved from https://www.webmd.com/drugs/2/drug-4284-4049/diclofenac-oral/diclofenac-sodium-enteric-coated-tablet-oral/details
  34. Wudali, S. N., Barwad, A., Banadka, A., Shaikh, A., Al-Khayri, J. M., & Nagella, P. (2023). Bioactive Compounds and Biological Activities of Taro (Colocasia esculenta (L.). Schott). In Reference series in phytochemistry (pp. 1–23). https://doi.org/10.1007/978-3-031-29006-0_2-1