HomeScience Asia Reviewvol. 11 no. 1 (2025)

Antimicrobial Activity of SemiPurified Ethanolic Extracts of Sea Lettuce (Ulva lactuca) and Ribbon Sea Lettuce (Ulva reticulata) Against Selected Pathogenic Microbes

An-Najwa Muhaiminah M. Tawasil | Roxanne Marie F. Ebol | Cris Angelo G. Revillas | Ben-Frazier U. Sabtula

Discipline: microbiology and cell science

 

Abstract:

Antimicrobial Resistance (AMR) has been a significant challenge in healthcare. This research study is aimed at investigating the potential antimicrobial activity of Ulvaceae species, Sea Lettuce (Ulva lactuca) and Ribbon Sea Lettuce (Ulva reticulata), through sourcing out its secondary metabolites against specific pathogenic microbes, Escherichia coli (gramnegative bacteria) and Staphylococcus aureus(gram-positive bacteria). The study employed an Experimental Research Design, which yielded results that have shown Treatment A (U. lactuca Semi-Purified Ethanolic Extract), specifically A1 (100%), with a mean recorded 7.33, to exhibit a potential gram-positive inhibitory effect. Meanwhile, Treatment B (U. reticulata Semi-Purified Ethanolic Extract), specifically B1 (100%), with a mean of 6.33, has a potential inhibition against gram-negative bacteria. ANOVA revealed that Treatment A and Treatment B have shown a p-value of 0.000, which is lower than the assigned p-value of 0.05. Hence, there is a notable difference between their antimicrobial activity in terms of the diameters of their zones of inhibition against Staphylococcus aureus and Escherichia coli when compared with the positive control (Ampicillin). Thus, Ulva lactuca and Ulva reticulata Semi-Purified Ethanolic Extracts have potential antimicrobial activity against specific pathogenic microbes. The experimentation, testing, data collection, and other materials such as the positive control (Ampicillin), as well as the bacterial preparation of E. coli and S. aureus (prepared through bacterial culture), were all conducted at the Universidad de Zamboanga (UZ) Laboratory Building, located at Don Toribio St., Tetuan, Zamboanga City. Meanwhile, the experimental variables, Ulva lactuca and Ulva reticulata, were collected on the shore of Maasin, Zamboanga City.



References:

  1. Abu, N.J., Bujang, J.S., Zakaria, M. H., Zulkifly, S. (2022). Use of Ulva reticulata as a growth supplement for tomato (Solanum lycopersicum). PLoS ONE 17(6): e0270604. https://doi.org/10.1371/journal.pone.02706041
  2. Adamu, B. F., Gao, J., Tan, S., & Gebeyehu, E. K. (2022). Comparison of antibacterial property of herbal plant–based bio-active extract loaded polymer electrospun nanofibrous mat wound dressings. Journal of Industrial Textiles, 51(2_suppl), 1793S-1814S.
  3. Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science. 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
  4. Ardita, N. F., Mithasari, L., Untoro, D., & Salasia, S. I. O. (2021). Potential antimicrobial properties of the Ulva lactuca extract against methicillin-resistant Staphylococcus aureus-infected wounds: A review. Veterinary World, 14(5), 1116.
  5. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., ... & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance, 1645-1658.
  6. Bakakew, C. D., Tabuac, J. V., & Torio, H. E. (2021). Phenotypic Antimicrobial Resistance Patterns in Escherichia coli Isolated from Slaughtered Health Pigs and Cattle in Nueva Vizcaya, Philippines. Philipp. J. Vet. Med., 58(1): 30-39.
  7. Barroga, T. R. M., Morales, R. G., Benigno, C. C., Castro, S. J. M., Caniban, M. M., Cabullo, M. F. B., ... & Dorado-Garcia, A. (2020). Antimicrobials used in backyard and commercial poultry and swine farms in the Philippines: a qualitative pilot study. Frontiers in veterinary science, 7, 329.
  8. Bazan, L.P. (2017). Anti-Inflammatory Activity of the Crude Extract and Fractions of Fruit Peels of Artocarpus odoratissimus Blanco (Family: Moraceae) on Chorioallantoic Membrane of Duck Embryo. Pg. 17-24.
  9. Bendy, A., Christobel, G., Muthusamy, K., Alfarhan, A., & Anantharaman, P. (2022). Green synthesis of iron nanoparticles from Ulva lactuca and bactericidal activity against enteropathogens. Journal of King Saud University – Science. https://doi.org/10.1016/j.jksus.2022.101888
  10. Besednova, N. N., Andryukov, B. G., Zaporozhets, T. S., Kryzhanovsky, S. P., Kuznetsova, T. A., Fedyanina, L. N., ... & Zvyagintseva, T. N. (2020). Algae polyphenolic compounds and modern antibacterial strategies: Current achievements and immediate prospects. Biomedicines, 8(9), 342.
  11. Binsuwaidan, R., El-Masry, T. A., El-Sheekh, M., Seadawy, M. G., Makhlof, M. E., Aboukhatwa, S. M., ... & El-Bouseary, M. M. (2023). Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection. Marine Drugs, 22(1), 30.
  12. Biris-Dorhoi, E. S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., ... & Farcas, A. C. (2020). Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients, 12(10), 3085.
  13. Creswell, W.J. (2015). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. Second Edition. Prentice Hall. United States. https://e-journal.my.id/jsgp/article/download/474/428/
  14. Daglia, M. (2012). Polyphenols as antimicrobial agents. Current opinion in biotechnology, 23(2), 174-181.
  15. Dominguez, H., & Loret, E. P. (2019). Ulva lactuca, a source of troubles and potential riches. Marine drugs, 17(6), 357.
  16. Egyptian Journal of Aquatic Biology & Fisheries (2019). Ulva lactuca as a cheap and safe biopesticide in fields and its chemical composition(invitro).
  17. https://ejabf.journals.ekb.eg/article_67227_1f650077fb66d8f45bbdab3ae83d4936.pdf
  18. Foster, T. J. (2005). Immune evasion by staphylococci. Nature Reviews. Microbiology, 3(12), 948–958. https://doi.org/10.1038/nrmicro1289
  19. Ghalem, B., & Zouaoui, B. (2018). Antibacterial activity of diethyl ether and chloroform extracts of seaweeds against Escherichia coli and Staphylococcus aureus. International Journal of Avian & Wildlife Biology. 2018;3(4):310‒313.
  20. Hafiz, R. & Saeed, S. (2024). Hybrid whale algorithm with evolutionary strategies and filtering for high-dimensional optimization: Application to microarray cancer data. Plos One. https://doi.org/10.1371/journal.pone.0295643
  21. Hanani, M. (2021). Bioactive Components of Three Seaweed Species from Hadji Panglima Tahil, Sulu Philippines. Agriculture, Forestry and Fisheries. 10(4). pp. 127-131. doi: 10.11648/j.aff.20211004.12
  22. Handayani D, Ananda N, Ade Artasasta M, Ruslan R, Fadriyanti O, Tallei T.E. (2019). Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. J Appl Pharm Sci, 2019; 9(03):009–013.
  23. Jegan, S., Raj, G. A., Chandrasekaran, M., & Venkatesalu, V. (2019). Anti-MRSA activity of Caulerpa and Ulva species from Gulf of Mannar Coast, South India. Journal of Emerging Technologies and Innovative Research, 6(1), 78-99.
  24. Julyasih, K. S. M., & Purnawati, A. (2023). Phytochemical Compounds and Antibacterial Activity to Escherichia coli of Green Macro Algae. In IOP Conference Series: Earth and Environmental Science (Vol. 1131, No. 1, p. 012012). IOP Publishing.
  25. Kancherla, N., et. al. (2019). Preliminary Analysis of Phytoconstituents and Evaluation of Anthelmintic Property of Cayratia auriculata (In Vitro). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035446/
  26. Katara, S., Bhatt, A., Jatav, S., Kumar, A., Tandel, B., Kurmi, R. (2023). Chlorophyceae seaweed diversity along Sikka Coast, Gulf of Kachcha, Gujarat. 12(4). 482-488.
  27. Kirk, R.E. (2009). Experimental Design. Sage Handbook of Quantitative Methods in Psychology. Pg. 23 - 45. https://doi.org/10.1016/B978-008044910-4.00431-4
  28. Largo, D. B. (2022b). Ulva reticulata (ribbon sea lettuce) [Dataset]. In CABI Compendium. https://doi.org/10.1079/cabicompendium.117717
  29. Lomartire, S., & Gonçalves, A. M. (2023). An Overview on Antimicrobial Potential of Edible Terrestrial Plants and Marine Macroalgae Rhodophyta and Chlorophyta Extracts. Marine Drugs, 21(3), 163.
  30. López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., Balboa, E. M., ... & Domínguez, H. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Marine drugs, 19(10), 552.
  31. Madhusudan, S., & Baskaran, R. (2023). The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. Algal Research, 71, 103069.
  32. Mashjoor, S., Yousefzadi, M., Esmaeili, M. A., & Rafiee, R. (2016). Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology, 68(5), 1717–1726. https://doi.org/10.1007/s10616-015-9921-6
  33. Mueller M., & Tainter C., (2023). Escherichia coli Infection. StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK564298/
  34. Mylotte, J. M., Tayara, A., & Goodnough, S. (2002). Epidemiology of Bloodstream Infection in Nursing Home Residents: Evaluation in a Large Cohort from Multiple Homes. Clinical Infectious Diseases/Clinical Infectious Diseases (Online. University of Chicago. Press), 35(12), 1484–1490. https://doi.org/10.1086/344649
  35. Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11(1), 142–201. https://doi.org/10.1128/cmr.11.1.142
  36. Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. B., & Uddin, M. S. (2021). Role of phenolic compounds in human disease: Current knowledge and future Prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233
  37. Rasigade, J., & Vandenesch, F. (2014). Staphylococcus aureus: A pathogen with still unresolved issues. Infection, Genetics and Evolution, 21, 510–514. https://doi.org/10.1016/j.meegid.2013.08.018
  38. Robredo, J. P. G., Eala, M. A. B., Paguio, J. A., Salamat, M. S. S., & Celi, L. A. G. (2022). The challenges of combatting antimicrobial resistance in the Philippines. The Lancet Microbe, 3(4), e246.
  39. Sabtula, B. U. (2023). Determination of Chlortetracycline Residue in Chicken (Gallus gallus domesticus, Family: Phasianidae) Meat Products From Public Markets of Zamboanga City. Bugkos: A PWU Book of Abstract. Volume 2. 2023. Pg. 52-53. PWU Research Journal. November 24 - 25, 2023. Published by Philippine Women’s University.
  40. Shah, Biren & Seth, A.K. (2010). Textbook of Pharmacognosy and Phytochemistry. 1st Edition. Reed Elsevier India Private Limited: Electric Press.
  41. Siddiquee, S. (2017).The Basic Concept of Microbiology. Fungal Biology, pg. 1-15. https://doi.org/10.1007/978-3-319-64946-71
  42. Silva, A., Silva, S. A., Carpena, M., Garcia-Oliveira, P., Gullón, P., Barroso, M. F., ... & Simal-Gandara, J. (2020). Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics, 9(10), 642.
  43. Sirbu, R., Stanciu, G., Tomescu, A., Ionescu, A., & Cadar, E. (2019). Evaluation of Antioxidant and Antimicrobial Activity in Relation to Total Phenolic Content of Green Algae from Black Sea. Revista de Chimie. 70. 1197-1203. 10.37358/RC.19.4.7091.
  44. Taylor, T., & Unakal C. (2023). Staphylococcus aureus Infection. StatPearls. Treasure Island (FL): StatPearls Publishing; https://www.ncbi.nlm.nih.gov/books/NBK441868/
  45. Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/cmr.00134-14
  46. University of Oxford (2022). An estimated 1.2 million people died in 2019 from antibiotic-resistant bacterial infections. University of Oxford: News & Events. https://www.ox.ac.uk/news/2022-01-20-estimated-12-million-people-died-2019-antibiotic-resistant-bacterial-infections#:~:text=The%20analysis%20shows%20AMR%20was,deaths%2C%20respectively%2C%20in%202019
  47. Unnikrishnan, P. S., Animish, A., Madhumitha, G., Suthindhiran, K., Jayasri, M.A. (2022). Bioactivity Guided Study for the Isolation and Identification of Antidiabetic Compounds from Edible Seaweed—Ulva reticulata. Molecules 2022,27,8827. https://doi.org/10.3390/molecules27248827
  48. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041
  49. Van Tran, T. T., Truong, H. B., Ha, N., Tran, V., Thu, T.M. (2018). Structure, Conformation in Aqueous Solution and Antimicrobial Activity of Ulvan Extracted from Green Seaweed Ulva reticulata. Nat. Prod. 32. 2291-2296.
  50. Word Health Organization (2021). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=Antimicrobial%20resistance%20(AMR)%20is%20a,public%20health%20threats%20facing%20humanity.
  51. Yu-Qing, T., Mahmood, K., Shehzadi, R., & Ashraf, M. F. (2016). Ulva lactuca and its polysaccharides: Food and biommnmedical aspectskb gbbb . Journal of Biology, Agriculture and Healthcare, 6(1), 140-151.