HomeNRCP Research Journalvol. 24 no. 1 (2025)

Simulated Changes In The Phytoplankton Community Structure At The Subsurface Chlorophyll Maximum In The Philippine Sea: Sensitivity Analysis And Possible Temperature Scenarios

Kristina SA Cordero-Bailey

Discipline: molecular biology, biophysics and biochemistry

 

Abstract:

Our study simulated a size-structured phytoplankton community in the Philippine Sea to determine the factors that regulate the vertical phytoplankton distribution using a one-dimensional coupled physical-biological individual-based model in the Virtual Ecosystem Workbench (VEW) software. Three phytoplankton groups (pico-, nanoand microphytoplankton) were governed by specific metabolic and reproductive rates and simulated to be grazed on by copepods, which in turn were controlled by carnivorous zooplankton. Sensitivity analysis using three salinity scenarios (33, 34 and 36 Practical Salinity Units [PSU]) showed that nutrient availability drives the phytoplankton communities towards the end of the simulations, wherein only the 34 PSU simulation was able to recreate the Subsurface Chlorophyll Maximum (SCM) profile similar to the 2011 in-situ observation. Three temperature scenarios (+1.0ºC, +2.0ºC, +10.0ºC) were then used to predict phytoplankton responses to changing temperature regimes. The scenarios predicted the SCM would develop deeper than the original simulation and a significant increase in the abundance of the dominant phytoplankton at the SCM, possibly affecting the higher trophic web or increasing the deep carbon export to deeper waters. Although the VEW software has been useful for investigations on plankton dynamics of global and specific regions, our study finds that the physical dynamics of the software is not attuned to simulate the highly variable Philippine Sea setting, limiting the model runs only to the drier months of the year. We suggest caution in the use of the version of the software as it needs restructuring to be more useful in such areas.



References:

  1. Acevedo-Trejos, E., Brandt, G., Bruggeman, J., & Merico, A. (2015). Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Scientific reports, 5, 8918. https://doi.org/10.1038/srep08918
  2. Ajani, P. A., Davies, C. H., Eriksen, R. S., & Richardson, A. J. (2020). Global warming impacts micro-phytoplankton at a long-term Pacific Ocean coastal station. Frontiers in Marine Science7, 878. https://doi.org/10.3389/fmars.2020.576011
  3. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., & Thingstad, F. J. M. E. P. S. (1983). The ecological role of water-column microbes in the sea. Marine ecology progress series. Oldendorf10(3), 257-263. https://doi.org/10.3354%2Fmeps010257
  4. Behrenfeld, M., O’Malley, R., Siegel, D., McClain, J., Sarmiento, J., Feldman, G., Milligan, A., Falkowski, P., Letelier, R., & Boss, E. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444, 752-755 https://doi.org/10.1038/nature05317
  5. Boyce, D., Lewis, M. & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466, 591-596 https://doi.org/10.1038/nature09268
  6. Cabré, A., Marinov, I., & Leung, S. (2015). Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Climate Dynamics45(5), 1253-1280. https://doi.org/10.1007/s00382-014-2374-3
  7. Cabrera, O.C., Villanoy, C.L., Alabia, I.D. and Gordon, A.L., (2015). Shifts in Chlorophyll a off Eastern Luzon, Philippines, associated with the North Equatorial Current bifurcation Latitude. Oceanography, 28(4), pp.46-53. https://doi.org/10.5670/oceanog.2015.80
  8. Carlotti, F., & Wolf, U. (1998). A Lagrangian ensemble model of Calanus finmarchius coupled with a 1-D ecosystem model. Fisheries Oceanography, 7, 191-204. https://doi.org/10.1046/j.1365-2419.1998.00085.x
  9. Chenillat F, Rivière P, Ohman MD (2021). On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing. PLoS ONE 16(5). https://doi.org/10.1371/journal.pone.0252033
  10. Chust, G., Allen, J. I., Bopp, L., Schrum, C., Holt, J., Tsiaras, K., ... & Irigoien, X. (2014). Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biology20(7), 2124-2139.  https://doi.org/10.1111/gcb.12562
  11. Cordero-Bailey, K., Bollozos, I. S. F., Palermo, J. D. H., Silvano, K. M., Escobar, M. T. L., Jacinto, G. S., ... & Yñiguez, A. T. (2021). Characterizing the vertical phytoplankton distribution in the Philippine Sea off the northeastern coast of Luzon. Estuarine, Coastal and Shelf Science254, 107322. https://doi.org/10.1016/j.ecss.2021.107322
  12. Cordero-Bailey, K. S., Almo, A. T., David, L. T., & Yñiguez, A. T. (2022). Estimation of the vertical phytoplankton distribution in the Philippine Sea: Influence of turbulence following passage of typhoons. Regional Studies in Marine Science56, 102659. https://doi.org/10.1016/j.rsma.2022.102659
  13. Cullen, J. J. (2015). Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annual Review of Marine Science7, 207-239. https://doi.org/10.1146/annurev-marine-010213-135111
  14. Defriez, E. J., Sheppard, L. W., Reid, P. C., & Reuman, D. C. (2016). Climate change‐related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea. Global Change Biology22(6), 2069-2080.  https://doi.org/10.1111/gcb.13229
  15. Fennel K, Boss E. (2003). Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnology and Oceanography. 48(4),1521-1534. https://doi.org/10.4319/lo.2003.48.4.1521
  16. Franks, P. J. (2002). NPZ models of plankton dynamics: their construction, coupling to physics, and application. Journal of Oceanography, 58(2), 379-387. https://doi.org/10.1023/A:1015874028196
  17. Gittings, J.A., Raitsos, D.E., Krokos, G. et al. (2018).  Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Sci Rep 8, 2240 https://doi.org/10.1038/s41598-018-20560-5
  18. Global Modeling and Assimilation Office (GMAO) (2015). MERRA-2 instM_2d_lfo_Nx: 2d,Monthly mean,Instantaneous,Single-Level,Assimilation,Land Surface Forcings V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Accessed: August 20, 2021], 10.5067/11F99Y6TXN99
  19. Gregg, W. and Rousseaux, C. (2017). NASA Ocean Biogeochemical Model assimilating satellite chlorophyll data global monthly VR2017, Edited by Watson Gregg and Cecile Rousseaux, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Accessed: August 20, 2021], 10.5067/BHCFDIICIOU5
  20. Hinsley, W., Field, T., Woods, J. (2007). Creating Individual Based Models of the Plankton Ecosystem. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72584-8_15
  21. Huisman, J., Pham Thi, N., Karl, D. et al. (2006). Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439, 322–325 https://doi.org/10.1038/nature04245
  22. Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  23. Jagadeesan, L., Jyothibabu, R., Arunpandi, N. et al. (2017). Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons. Environ Monit Assess, 189, 105  https://doi.org/10.1007/s10661-017-5804-y
  24. Lewandowska, A. M., Hillebrand, H., Lengfellner, K., & Sommer, U. (2014). Temperature effects on phytoplankton diversity—The zooplankton link. Journal of Sea Research85, 359-364. https://doi.org/10.1016/j.seares.2013.07.003
  25. Li, G., Lin, Q., Ni, G., Shen, P., Fan, Y., Huang, L., & Tan, Y. (2012). Vertical patterns of early summer chlorophyll a concentration in the Indian Ocean with special reference to the variation of deep chlorophyll maximum. Journal of Marine Biology. https://doi.org/10.1155/2012/801248
  26. Li, Q. P., & Hansell, D. A. (2016). Mechanisms controlling vertical variability of subsurface chlorophyll maxima in a mode-water eddy. Journal of Marine Research74(3), 175-199. https://elischolar.library.yale.edu/journal_of_marine_research/419
  27. Lien, R.-C., Ma, B., Lee, C. M., Sanford, T. B., Mensah, V., Centurioni, L. R., Cornuelle, B. D., Gopalakrishnan, G., Gordon, A. L., Chang, M.-H., Jayne, S. R., & Yang, Y. J. (2015). The Kuroshio and Luzon Undercurrent East of Luzon Island. Oceanography28(4), 54–63. http://www.jstor.org/stable/24861928
  28. Liu, C. C., & Woods, J. D. (2004). Prediction of ocean colour: Monte Carlo simulation applied to a virtual ecosystem based on the Lagrangian Ensemble method. International Journal of Remote Sensing25(5), 921-936. https://doi.org/10.1080/0143116031000139809
  29. Lopez-Urrutia, A. and Moran, X.A. (2015). Temperature affects the size-structure of phytoplankton communities in the ocean. Limnology and Oceanography, 60(3), 733-738.  https://doi.org/10.1002/lno.10049
  30. Maranón, E., Cermeno, P., Latasa, M., & Tadonléké, R. D. (2012). Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography57(5), 1266-1278.  https://doi.org/10.4319/lo.2012.57.5.1266
  31. Marinov, I., Doney, S. C., & Lima, I. D. (2010). Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences7(12), 3941-3959. https://doi.org/10.5194/bg-7-3941-2010
  32. McQuatters-Gollop, A., Reid, P., Edwards, M., Burkill, P., Castellani, C., Batten, S., Gieskes, W., Beare, D., Bidigare, D., Head, E., Johnson, R., Kahru, M. Koslow, K., Pena, A. (2011). Is there a decline in marine phytoplankton?. Nature 472, E6–E7 https://doi.org/10.1038/nature09950
  33. Mesquita, M. C., Prestes, A. C. C., Gomes, A. M., & Marinho, M. M. (2020). Direct effects of temperature on growth of different tropical phytoplankton species. Microbial ecology79(1), 1-11.
  34. Miller, C., Lynch, D. R., Carlotti, F., Gentleman, W., & Lewis, C. V. W. (1998). Coupling of an individual-based population dynamic model of Calanus finmarchicus to a circulation model for the Georges Bank region. Fisheries Oceanography, 7, 219-234.  https://doi.org/10.1046/j.1365-2419.1998.00072.x
  35. Morán, X. A. G., A. López-Urrutia, A. Calvo-Diaz, and W. K. W. Li. (2010). Increasing importance of small phytoplankton in a warmer ocean. Glob. Chang. Biol., 16, 1137-1144. https://doi.org/10.1111/j.1365-2486.2009.01960.x
  36. Nogueira, E., Woods, J. D., Harris, C., Field, A. J., & Talbot, S. (2006). Phytoplankton co-existence: Results from an individual-based simulation model. Ecological Modelling, 198(1), 1-22. https://doi.org/10.1016/j.ecolmodel.2006.04.013
  37. O’Connor, M.I., Piehler, M.F., Leech, D.M., Anton, A., Bruno, J.F., (2009). Warming and resource availability shift food web structure and metabolism. PLoS Biology, 7(8). https://doi.org/10.1371/journal.pbio.1000178
  38. Pannard, A., Planas, D., & Beisner, B. E. (2015). Macrozooplankton and the persistence of the deep chlorophyll maximum in a stratified lake. Freshwater Biology60(8), 1717-1733.  https://doi.org/10.1111/fwb.12604
  39. Peter KH, Sommer U (2012). Phytoplankton Cell Size: Intra- and Interspecific Effects of Warming and Grazing. PLoS ONE 7(11): e49632. https://doi.org/10.1371/journal.pone.0049632
  40. Probyn, T. A., B. A. Mitchell-Innes, and S. Searson. (1995). Primary productivity and nitrogen uptake in the subsurface chlorophyll maximum on the eastern Agulhas Bank. Cont. Shelf Res., 15(15), 1903-1920. https://doi.org/10.1016/0278-4343(94)00099-9
  41. Qiu, B., Rudnick, D. L., Cerovecki, I., Cornuelle, B. D., Chen, S., Schönau, M. C., McClean, J. L., & Gopalakrishnan, G. (2015). The Pacific North Equatorial Current: New Insights from the Origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography28(4), 24-33. http://www.jstor.org/stable/24861925
  42. Rasconi, S., Winter, K., & Kainz, M. J. (2017). Temperature increase and fluctuation induce phytoplankton biodiversity loss–Evidence from a multi‐seasonal mesocosm experiment. Ecology and Evolution7(9), 2936-2946.  https://doi.org/10.1002/ece3.2889
  43. Richardson TL, Jackson GA. (2007). Small phytoplankton and carbon export from the surface ocean. Science, 315, 838-40. https://doi.org/10.1126/science.1133471
  44. Righetti, D., Vogt, M., Gruber, N., Psomas, A., & Zimmermann, N. E. (2019). Global pattern of phytoplankton diversity driven by temperature and environmental variability. Science Advances5(5). https://doi.org/10.1126/sciadv.aau6253
  45. Riley, G. A., Stommel, H. & Bumpus, D. F. (1949). Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Oceanogr. Coll., 12(3), 1-169.
  46. Sinerchia, M., Field, A. J., Woods, J. D., Vallerga, S., & Hinsley, W. R. (2012). Using an individual-based model with four trophic levels to model the effect of predation and competition on squid recruitment. ICES Journal of Marine Science: Journal du Conseil, 69(3), 439-447. https://doi.org/10.1093/icesjms/fsr190
  47. Sommer, U., and Lewandowska, A. (2011). Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob. Change Biol. 17, 154-162. https://doi.org/10.1111/j.1365-2486.2010. 02182.x
  48. Takahashi, M., & Hori, T. (1984). Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters. Marine Biology, 79(2), 177-186. https://doi.org/10.1007/bf00951826
  49. Talley, L. D. (2007), Hydrographic atlas of the World Ocean Circulation Experiment (WOCE) Volume 2 Pacific Ocean. M. Sparrow, P. Chapman, and J. Gould (Eds.), Int. WOCE Proj. Off., Southampton, U. K
  50. Taucher, J., & Oschlies, A. (2011). Can we predict the direction of marine primary production change under global warming?. Geophysical Research Letters38(2).   https://doi.org/10.1029/2010GL045934
  51. Thomas, M. K., Kremer, C. T., Klausmeier, C. A., & Litchman, E. (2012). A global pattern of thermal adaptation in marine phytoplankton. Science338(6110), 1085-1088.  https://doi.org/10.1126/science.1224836
  52. Thomas, M. K., Aranguren-Gassis, M., Kremer, C. T., Gould, M. R., Anderson, K., Klausmeier, C. A., & Litchman, E. (2017). Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Global Change Biology, 23(8), 3269–3280. https://doi.org/10.1111/gcb.13641 
  53. Uitz, J., H. Claustre, A. Morel, and S. B. Hooker (2006). Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophysical Research., 111, C08005, https://doi.org/10.1029/2005JC003207
  54. Weston, K., Fernand, L., Mills, D.K., Delahunty, R. and Brown, J. (2005). Primary production in the deep chlorophyll maximum of the central North Sea. Journal of Plankton Research, 27(9), pp.909-922. https://doi.org/10.1093/plankt/fbi064
  55. Wolf, K. U., & Woods, J. D. (1988). Lagrangian simulation of primary production in the physical environment—the deep chlorophyll maximum and nutricline. In Toward a theory on biological-physical interactions in the World ocean. Springer, Dordrecht.
  56. Woods, J. D. (2005). The Lagrangian Ensemble metamodel for simulating plankton ecosystems. Progress in Oceanography, 67(1), 84-159. https://doi.org/10.1016/j.pocean.2005.04.003
  57. Woods, J. D., & Barkmann, W. (1995). Modelling oligotrophic zooplankton production: Seasonal oligotrophy off the Azores. ICES Journal of Marine Science, 52, 723-734. https://doi.org/10.1016/1054-3139(95)80085-9
  58. Woods, J. D., & Onken, R. (1982). Diurnal variation and primary production in the ocean preliminary results of a Lagrangian ensemble model. Journal of Plankton Research, 4(3), 735-756. https://doi.org/10.1093/plankt/4.3.735
  59. Woods, J. D., Perilli, A., & Barkmann, W. (2005). Stability and predictability of a Virtual Plankton Ecosystem created by an individual-based model. Progress in Oceanography, 67, 1-2:43-83. https://doi.org/10.1016/j.pocean.2005.04.004.
  60. Xiu, P., Chai, F., Curchitser, E.N. (2018). Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Science Reports 8, 2866. https://doi.org/10.1038/s41598-018-21247-7