Phage-Mediated Biocontrol Of Salmonella Enterica Ser. Typhimurium In Bacon
Jess Laurence Concepcion | Alonso Enrique Africa | Marty Bernard Matias | Tracey Antaeus Gutierrez | Richard Rañeses | Gale Bernice Fungo | Ramon Arvin Noriel Santos | Carl Jay B Bregente | Jazon Harl D Hidrosollo | Tran Thi Dieu Thuy | Cheng-Yen Kao | Jose Bergantin Jr | Donna May Papa
Discipline: molecular biology, biophysics and biochemistry
Abstract:
Foodborne illnesses caused by Salmonella have long been a global public health
concern. Whether through contaminated meat or water, or undercooked food, this
poses a problem to countries like the Philippines that consume pork and chicken
frequently. This study isolated three Salmonella enterica ser. Typhimurium phages
(svBEATS-5, -6, and -9) from sewage samples to assess their potential biocontrol
use against Salmonella Typhimurium in commercially bought bacon. The phages
were characterized based on pH and thermal stability, and host range. Ideal
conditions for the phages were identified at pH 7 and 37°C, with the most stable
phages, svBEATS-5 and svBEATS-6, exhibiting similar lytic activity at all pH levels
and temperatures. To evaluate their efficacy as biocontrol agents, a phage cocktail
comprising the three phages was applied over bacon spiked with S. enterica
Typhimurium at 4°C and 30°C. Results showed that at both temperatures, the
concentration of Salmonella Typhimurium decreased in vitro and meat samples,
with a more significant reduction under refrigerated conditions. In addition, the
phages could maintain viable concentrations at temperatures, 4°C and 30°C. The
results suggest that the phages can be employed to control Salmonella Typhimurium
in bacon and can be a viable alternative to using antimicrobials in bacon and other
meat products.
References:
- Abhisingha, M., Dumnil, J., & Pitaksutheepong, C. (2020). Efficiency of phage cocktail to reduce Salmonella Typhimurium on chicken meat during low temperature storage. Lebensmittel-Wissenschaft & Technologie - Food Science and Technology, 129, 109580.
- Ackermann H. W. (2009). Phage classification and characterization. Methods in Molecular Biology, 501, 127-140. https://doi.org/10.1007/978-1-60327-164-6_13.
- Aidara-Kane, A., Angulo, F. J., Conly, J. M., Minato, Y., Silbergeld, E. K., McEwen, S. A., Collignon, P. J., & WHO Guideline Development Group (2018). World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrobial resistance and infection control, 7, 7. https://doi.org/10.1186/s13756-017-0294-9.
- Alvarez-Ordóñez, A., Broussolle, V., Colin, P., Nguyen-The, C., & Prieto, M. (2015). The adaptive response of bacterial food-borne pathogens in the environment, host and food: implications for food safety. International journal of food microbiology, 213, 99-109.
- Brockhurst, M.A., Koskella, B., Zhang, QG. (2017). Bacteria-Phage Antagonistic Coevolution and the Implications for Phage Therapy. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_7-1.
- Bull, J. J., Christensen, K. A., Scott, C., Jack, B. R., Crandall, C. J., & Krone, S. M. (2018). Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities. Antibiotics, 7(1), 8.
- Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Critical reviews in food science and nutrition, 53(1), 11-48.
- Carey-Smith, G. V., Billington, C., Cornelius, A. J., Hudson, J. A., & Heinemann, J. A. (2006). Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS microbiology letters, 258(2), 182-186. https://doi.org/10.1111/j.1574-6968.2006.00217.x
- Casaburi, A., Piombino, P., Nychas, G. J., Villani, F., & Ercolini, D. (2015). Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, 45, 83-102.
- Centers for Disease Control and Prevention. (2023). Salmonella Homepage. Retrieved from: https://www.cdc.gov/salmonella/index.html
- Centers for Disease Control and Prevention. (2023). Controlling Antimicrobial Resistance: Livestock and Poultry Producers. Retrieved from: https://www.cdc.gov/antimicrobial-resistance/index.html
- Chiu, L. H., Chiu , C. H., Horn, Y. M., Chiou, C. S., Lee, C. Y., Yeh, C. M., ... & Chu, C. (2010). Characterization of 13 multi-drug resistant Salmonella serovars from different broiler chickens associated with those of human isolates. BMC Microbiology, 10, 1-10.
- Clokie, M. R., & Kropinski, A. (2009). Bacteriophages: Methods and protocols, volume 1: Isolation, characterization, and interactions. Humana Press.
- Coburn, B., Grassl, G. A., & Finlay, B. B. (2007). Salmonella, the host and disease: a brief review. Immunology and Cell Biology, 85(2), 112-118.
- Fennema, O. R. (1996). Food chemistry (Vol. 76). CRC Press.
- Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, M., & Rossmanith, P. (2016). Influence of environmental factors on phage–bacteria interaction and on the efficacy and infectivity of phage P100. Frontiers in Microbiology, 7, 1152.
- Fong, K., LaBossiere, B., Switt, A. I., Delaquis, P., Goodridge, L., Levesque, R. C., ... & Wang, S. (2017). Characterization of four novel bacteriophages isolated from British Columbia for control of non-typhoidal Salmonella in vitro and on sprouting alfalfa seeds. Frontiers in Microbiology, 2193.
- Fong, K., Wong, C. W., Wang, S., & Delaquis, P. (2021). How broad is enough: the host range of bacteriophages and its impact on the agri-food sector. Therapy, Applications, and Research, 2(2), 83-91.
- Gallet, R., Kannoly, S., & Wang, I. N. (2011). Effects of bacteriophage traits on plaque formation. BMC microbiology, 11(1), 1-16.
- Gomez, P., Bennie, J., Gaston, K. J., & Buckling, A. (2015). The impact of resource availability on bacterial resistance to phages in soil. PLoS One, 10(4), e0123752.
- Goodridge, L. D., & Bisha, B. (2011). Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage, 1(3), 130–137. https://doi.org/10.4161/bact.1.3.17629
- Gu, J., Liu, X., Li, Y., Han, W., Lei, L., Yang, Y., ... & Feng, X. (2012). A method for generation phage cocktail with great therapeutic potential. PloS one, 7(3), e31698.
- Guenther, S., Huwyler, D., Richard, S., & Loessner, M. J. (2009). Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and Environmental Microbiology, 75(1), 93-100.
- Hagens, S., & Loessner, M. J. (2010). Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Current Pharmaceutical Biotechnology, 11(1), 58-68.
- Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1.
- Hasan, M., & Ahn, J. (2022). Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics, 11(7), 915.
- Hashem, F., & Parveen, S. (2016). Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiology, 53, 104-109.
- Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America, 49(8), 1248–1253.
- Hyman, P. (2019). Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals, 12(1), 35.
- Jończyk, E., Kłak, M., Międzybrodzki, R., & Górski, A. (2011). The influence of external factors on bacteriophages. Folia Microbiologica, 56, 191-200.
- Kasman, L. M., & Porter, L. D. (2021). Bacteriophages. In StatPearls [Internet]. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK493185/
- Kazi, M., & Annapure, U. S. (2016). Bacteriophage biocontrol of foodborne pathogens. Journal of Food Science and Technology, 53(3), 1355-1362.
- Keerthirathne, T. P., Ross, K., Fallowfield, H., & Whiley, H. (2016). A review of temperature, pH, and other factors that influence the survival of Salmonella in mayonnaise and other raw egg products. Pathogens, 5(4), 63.
- Khan Mirzaei, M., & Nilsson, A. S. (2015). Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS one, 10(3), e0118557.
- Khezerlou, A., pouya Akhlaghi, A., Alizadeh, A. M., Dehghan, P., & Maleki, P. (2022). Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. Toxicology Reports.
- King, A. M., Lefkowitz, E., Adams, M. J., & Carstens, E. B. (Eds.). (2011). Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses (Vol. 9). Elsevier.
- Kotzekidou, P. (1998). Microbial stability and fate of Salmonella Enteritidis in Halva, a low-moisture confection. Journal of Food Protection, 61(2), 181–185. doi:10.4315/0362-028x-61.2.181
- Labrie, S. J., Samson, J. E., & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 8(5), 317-327.
- Lamas, A., Miranda, J. M., Regal, P., Vázquez, B., Franco, C. M., & Cepeda, A. (2018). A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiological Research, 206, 60-73.
- Langlet, J., Gaboriaud, F., Duval, J. F., & Gantzer, C. (2008). Aggregation and surface properties of F-specific RNA phages: implication for membrane filtration processes. Water research, 42(10-11), 2769-2777.
- Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3, 287. https://doi.org/10.3389/fmicb.2012.00287
- Li, H. P, Wang, H. D’aoust, J. Y., & Maurer, J. (2013). Salmonella species. Food Microbiology: Fundamentals and Frontiers, 225-261.
- Li, X., Xiong, Q., Xu, B., Wang, H., Zhou, H., & Sun, Y. (2021). Bacterial community dynamics during different stages of processing of smoked bacon using the 16S rRNA gene amplicon analysis. International Journal of Food Microbiology, 351, 109076. doi:10.1016/j.ijfoodmicro.2021.109076
- McGee, L. W., Barhoush, Y., Shima, R., & Hennessy, M. (2023). Phage‐resistant mutations impact bacteria susceptibility to future phage infections and antibiotic response. Ecology and Evolution, 13(1), e9712.
- Müller, K., Aabo, S., Birk, T., Mordhorst, H., Bjarnadóttir, B., & Agersø, Y. (2012). Survival and growth of epidemically successful and nonsuccessful Salmonella enterica clones after freezing and dehydration. Journal of Food Protection, 75(3), 456–464. doi:10.4315/0362-028x.jfp-11-167
- Mutz, Y. D. S., Rosario, D. K. A., Paschoalin, V. M. F., & Conte-Junior, C. A. (2020). Salmonella enterica: a hidden risk for dry-cured meat consumption?. Critical Reviews in Food Science and Nutrition, 60(6), 976-990.
- Nair, A., Balasaravanan, T., Malik, S. S., Mohan, V., Kumar, M., Vergis, J., & Rawool, D. B. (2015). Isolation and identification of Salmonella from diarrheagenic infants and young animals, sewage waste and fresh vegetables. Veterinary World, 8(5), 669.
- Nobrega, F. L., Costa, A. R., Santos, J. F., Siliakus, M. F., Van Lent, J. W., Kengen, S. W., ... & Kluskens, L. D. (2016). Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine. Scientific Reports, 6(1), 39235.
- Ooi, N., Chopra, I., Eady, A., Cove, J., Bojar, R., & O’neill, A. J. (2013). Antibacterial activity and mode of action of tert-butylhydroquinone (TBHQ) and its oxidation product, tert-butylbenzoquinone (TBBQ). Journal of Antimicrobial Chemotherapy, 68(6), 1297-1304.
- Paclibare, P. A. P., Calayag, A. M. B., Santos, P. D. M., & Rivera, W. L. (2017). Molecular characterization of Salmonella enterica isolated from raw and processed meats from selected wet markets in Metro Manila, Philippines. Philipp Agric Sci, 100, 55-62.
- Petsong, K., Benjakul, S., & Vongkamjan, K. (2019). Evaluation of storage conditions and efficiency of a novel microencapsulated Salmonella phage cocktail for controlling S. enteritidis and Salmonella Typhimurium in-vitro and in fresh foods. Food Microbiology, 83, 167-174.
- Phothaworn, P., Supokaivanich, R., Lim, J., Klumpp, J., Imam, M., Kutter, E., Galyov, E. E., Dunne, M., & Korbsrisate, S. (2020). Development of a broad-spectrum Salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiology, 92, 103586. https://doi.org/10.1016/j.fm.2020.103586
- Pirnay, J. P., Blasdel, B. G., Bretaudeau, L., Buckling, A., Chanishvili, N., Clark, J. R., ... & Van den Eede, G. (2015). Quality and safety requirements for sustainable phage therapy products. Pharmaceutical Research, 32, 2173-2179.
- Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers in Pharmacology, 10, 513.
- Robinson, R. K. (2014). Encyclopedia of food microbiology. Academic press. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780123847300002603
- Roucourt, B., & Lavigne, R. (2009). The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environmental Microbiology, 11(11), 2789-2805.
- Samson, J. E., Magadán, A. H., Sabri, M., & Moineau, S. (2013). Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology, 11(10), 675-687.
- Samtiya, M., Matthews, K. R., Dhewa, T., & Puniya, A. K. (2022). Antimicrobial resistance in the food chain: trends, mechanisms, pathways, and possible regulation strategies. Foods, 11(19), 2966. https://www.mdpi.com/2304-8158/11/19/2966
- Santos R.A. and Papa D. M. D. (2020). Bacteriophage-based biocontrol of Salmonella enterica ser. Enteritidis in selected ready-to-eat food. Philippine Science Letters, 13, 127-135. ISSN 2094-2818
- Santos, P. D. M., Widmer, K. W., & Rivera, W. L. (2020). PCR-based detection and serovar identification of Salmonella in retail meat collected from wet markets in Metro Manila, Philippines. PloS one, 15(9), e0239457. https://doi.org/10.1371/journal.pone.0239457
- Sia, S., Lagrada, M., Olorosa, A., Limas, M., Jamoralin Jr, M., Macaranas, P. K., ... & Carlos, C. (2020). A fifteen-year report of serotype distribution and antimicrobial resistance of Salmonella in the Philippines. Philippine Journal of Pathology, 5(1), 19-29.
- Silva, Y. J., Costa, L., Pereira, C., Cunha, Calado, R., Gomes, N. C., & Almeida, A. (2014). Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microbial Biotechnology, 7(5), 401-413.
- Soladoye, P. O., Shand, P. J., Aalhus, J. L., Gariépy, C., & Juárez, M. (2015). Review: pork belly quality, bacon properties and recent consumer trends. Canadian Journal of Animal Science, 95(3), 325-340. doi:10.4141/cjas-2014-121
- Storms, Z. J., & Sauvageau, D. (2014). Evidence that the heterogeneity of a T4 population is the result of heritable traits. PloS one, 9(12), e116235.
- Thanki, A. M., Brown, N., Millard, A. D., & Clokie, M. R. (2019). Genomic characterization of jumbo Salmonella phages that effectively target United Kingdom pig-associated Salmonella serotypes. Frontiers in Microbiology, 10, 1491.
- Turner, D., Shkoporov, A. N., Lood, C., Millard, A. D., Dutilh, B. E., Alfenas-Zerbini, P., ... & Adriaenssens, E. M. (2023). Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Archives of Virology, 168(2), 74.
- Wang, C., Nie, T., Lin, F., Connerton, I. F., Lu, Z., Zhou, S., & Hang, H. (2019). Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Virus Research, 273, 197759.
- Wang, J., Li, Y., Xu, X., Liang, B., Wu, F., Yang, X., ... & Song, H. (2017). Antimicrobial resistance of Salmonella enterica serovar Typhimurium in Shanghai, China. Frontiers in Microbiology, 8, 510.
- Whichard, J. M., Sriranganathan, N., & Pierson, F. W. (2003). Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. Journal of Food Protection, 66(2), 220-225.
- Xu, Z., Li, L., Zhao, X., Chu, J., Li, B., Shi, L., ... & Shirtliff, M. (2011). Development and application of a novel multiplex polymerase chain reaction (PCR) assay for rapid detection of various types of staphylococci strains. Afr J Microbiol Res, 5(14), 1869-1873.
- Yeh, Y., Purushothaman, P., Gupta, N., Ragnone, M., Verma, S. C., & de Mello, A. S. (2017). Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Science, 127, 30-34. https://doi.org/10.1016/j.meatsci.2017.01.001
- Yu, Y. P., Gong, T., Jost, G., Liu, W. H., Ye, D. Z., & Luo, Z. H. (2013). Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii. FEMS Microbiology Letters, 348(2), 112-119.
ISSN 2980-4728 (Online)
ISSN 0117-3294 (Print)