Utilizing Sargassum polycystumas Co-Feedstock to Enhance Methane Yield from Pig Dung in Anaerobic Digestion
Earl Francis A. Busilaoco | Wendyl M. Aligato | Jan Nico R. Gaslang | Hyrn G. Almoroto | Kristine Yhuri A. Libreta | Mervy Aretha Deon L. Loon | Camella A. Redulla | Darius Miguel Pederes | Angela Glaiza B. Pingcas | Rovie Joice M. Durante | Ricksterlie C. Verzosa
Discipline: agricultural sciences
Abstract:
Anaerobic digestion (AD) is a promising technology for biogas production, but optimizing feedstock composition is still a key challenge. The present study investigated invasive macroalgae Sargassum polycystum as a co-feedstock source combined with pig dung to enhance methane production. Three feedstock groups were assessed: (1) mechanically pretreated S. polycystum + pig dung, (2) untreated S. polycystum + pig dung, and (3) pig dung alone. Seaweed feedstocks were collected in Dahican beachline, and pig manure was sourced from a livestock auction market in the City of Mati, Davao Oriental, the Philippines. Feedstocks were loaded and inoculated in an improvised biodigester. Methane concentrations were measured using a gas analyzer, and a flammability test was conducted to evaluate biogas quality. Kruskal-Wallis test revealed significant differences in methane production across treatments (H(2) = 9.116, p = 0.010). The pretreated group exhibited the highest methane concentration (>9,999.00 ppm), followed by the untreated group (8,931.75 ppm), while the control group produced the lowest yield (3,644.25 ppm). Post hoc analysis confirmed a significant difference in methane yield in the pretreated group compared to the control (p = 0.010). Only biogas from the pretreated group ignited, producing a blue flame indicating methane-rich, high-quality biogas. These findings highlight the dual benefit of using Sargassum macroalgae as co-feedstock, mitigating seaweed overgrowth in coastal areas and improving biogas production efficiency in pig manure. The study underscores the potential of seaweed-based co-digestion as an accessible, sustainable energy solution. Future research may explore long-term process stability, gas composition analysis, and the economic viability of large-scale applications.
References:
- Anacleto, T. M., Kozlowsky-Suzuki, B., Björn, A., Yekta, S. S., Masuda, L. S. M., de Oliveira, V. P., & Enrich-Prast, A. (2024). Methane yield response to pretreatment is dependent on substrate chemical composition: A meta-analysis on anaerobic digestion systems. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-024-51603-9
- Anggono, W. (2017). Behaviour of biogas containing nitrogen on flammability limits and laminar burning velocities. International Journal of Renewable Energy Research, 7(1), 305–310. https://doi.org/10.20508/ijrer.v7i1.5509.g6990
- AP, Y., Farghali, M., Mohamed, I. M. A., Iwasaki, M., Tangtaweewipat, S., Ihara, I., Sakai, R., & Umetsu, K. (2021). Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: Influences of mechanical, chemical, and biological pretreatments. Biochemical Engineering Journal, 175(May), 108140. https://doi.org/10.1016/j.bej.2021.108140
- Bohutskyi, P., Betenbaugh, M. J., & Bouwer, E. J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 155, 366–372. https://doi.org/10.1016/j.biortech.2013.12.095
- Castro, Y. A., Rodríguez, A., & Rivera, E. (2022). Biomethane production kinetics during the anaerobic co-digestion of Sargassum spp. and food waste using batch and fed-batch systems in Punta Cana, Dominican Republic. Materials for Renewable and Sustainable Energy, 11(3), 287–297. https://doi.org/10.1007/s40243-022-00224-1
- Cheong, K. L., Zhang, Y., Li, Z., Li, T., Ou, Y., Shen, J., Zhong, S., & Tan, K. (2023). Role of polysaccharides from marine seaweed as feed additives for methane mitigation in ruminants: A critical review. Polymers, 15(15). https://doi.org/10.3390/polym15153153
- Cunha dos Santos, T., Macho Pompermayer, L., Pimentel Santos, A. L. V., Campos Martins, R. C., Cavalcanti, D. N., Wolff Bueno, G., Madeira Sanchez, A. L., & Concha Obando, J. M. (2024). Dermocosmetic properties of bioproducts from Sargassum macroalgae: Chemical aspects, challenges, and opportunities. Frontiers in Marine Science, 11(November). https://doi.org/10.3389/fmars.2024.1500778
- Cunha dos Santos, T., Vale, T. M., Calvacanti, D. N., Machado, L. P., Barbarino, E., Martins, R. C. C., & Obando, J. M. C. (2022). Metabólitos bioativos e aplicações biotecnológicas de macroalgas do gênero Sargassum: Uma revisão. Revista Virtual de Química, 15(4), 1–18.
- Dahunsi, S. O. (2019). Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components. Bioresource Technology, 280(January), 18–26. https://doi.org/10.1016/j.biortech.2019.02.006
- Devault, D. A., Pierre, R., Marfaing, H., Dolique, F., & Lopez, P. J. (2021). Sargassum contamination and consequences for downstream uses: A review. Journal of Applied Phycology, 33(1), 567–602. https://doi.org/10.1007/s10811-020-02250-w
- Farghali, M., Mohamed, I. M. A., Osman, A. I., & Rooney, D. W. (2023). Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environmental Chemistry Letters, 21(1). Springer International Publishing. https://doi.org/10.1007/s10311-022-01520-y
- Fauziee, N. A. M., Chang, L. S., Wan Mustapha, W. A., Md Nor, A. R., & Lim, S. J. (2021). Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata, and Padina boryana). International Journal of Biological Macromolecules, 167. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.11.067
- Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69–76. https://doi.org/10.1093/af/vfy034
- Intergovernmental Panel on Climate Change [IPCC]. (2013). Summary for policymakers. In Climate change 2021—The physical science basis. https://doi.org/10.1515/ci-2021-0407
- Irfan, M., Wahab, I. H., Sarni, Subur, R., & Akbar, N. (2019). Seaweed Sargassum sp. as material for biogas production. AACL Bioflux, 12(5), 2015–2019.
- Jameel, M. K., Mustafa, M. A. A., H. S., Mohammed, A. J., Ghazy, H., Shakir, M. N., Lawas, A. M., Mohammed, S. K., Idan, A. H., Mahmoud, Z. H., Sayadi, H., & Kianfar, E. (2024). Biogas: Production, properties, applications, economic and challenges: A review. Results in Chemistry, 7(January), 101549. https://doi.org/10.1016/j.rechem.2024.101549
- Jelani, F., Walker, G., & Akunna, J. (2023). Effects of thermo-chemical and enzymatic pretreatment of tropical seaweeds and freshwater macrophytes on biogas and bioethanol production. International Journal of Environmental Science and Technology, 20(12), 12999–13008. https://doi.org/10.1007/s13762-023-04843-7
- Karthikeyan, P. K., Bandulasena, H. C. H., & Radu, T. (2024). A comparative analysis of pretreatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste. Industrial Crops and Products, 215(May), 118591. https://doi.org/10.1016/j.indcrop.2024.118591
- Keita, O., & Kamano, M. (2024). A biogas production model from pig manure: Comparison between modern and local pig manure in N’Zérékoré City, Republic of Guinea. European Journal of Advances in Engineering and Technology, 11(10), 59–69.
- Ketut, C. N., Agung, S., Mekro, P., Heri, H., & Bachtiar. (2018). The flame characteristics of the biogas produced through the digester method with various starters. IOP Conference Series: Materials Science and Engineering, 299(1). https://doi.org/10.1088/1757-899X/299/1/012091
- Kumar, M., Sun, Y., Rathour, R., Pandey, A., Thakur, I. S., & Tsang, D. C. W. (2020). Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 716, 137116. https://doi.org/10.1016/j.scitotenv.2020.137116
- Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240(January), 120–137. https://doi.org/10.1016/j.apenergy.2019.01.243
- Maneein, S., Milledge, J. J., Nielsen, B. V., & Harvey, P. J. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4(4). https://doi.org/10.3390/fermentation4040100
- Marshall, A., & Oyekola, O. (2025). Effects of the chemical and mechanical pre-treatment of brown seaweed on biomethane yields in a batch configuration. Biomass, 5(7), 1–15. https://doi.org/10.3390/biomass5010007
- McKennedy, J., & Sherlock, O. (2015). Anaerobic digestion of marine macroalgae: A review. Renewable and Sustainable Energy Reviews, 52, 1781–1790. https://doi.org/10.1016/j.rser.2015.07.101
- Milledge, J. J., Maneein, S., López, E. A., & Bartlett, D. (2020). Sargassum inundations in Turks and Caicos: Methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies, 13(6). https://doi.org/10.3390/en13061523
- Milledge, J. J., Nielsen, B. V., Sadek, M. S., & Harvey, P. J. (2018). Effect of freshwater washing pretreatment on Sargassum muticum as a feedstock for biogas production. Energies, 11(7). https://doi.org/10.3390/en11071771
- Naveed Zahir Creativity. (2019). How to make free gas from fruit and vegetables waste | Bio gas plant |.
- Oliveira, J. V., Alves, M. M., & Costa, J. C. (2014). Design of experiments to assess pretreatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresource Technology, 162, 323–330. https://doi.org/10.1016/j.biortech.2014.03.155
- Orhorhoro, E. K., & Oghoghorie, O. (2024). Enhancing biogas yield through anaerobic co-digestion of animal manure and seaweed. Progress in Energy and Environment, 28(1), 1–22. https://doi.org/10.37934/progee.28.1.122
- Rivera-Hernández, Y., Hernández-Eugenio, G., Balagurusamy, N., & Espinosa-Solares, T. (2022). Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste. Renewable Energy, 199(November), 1336–1344. https://doi.org/10.1016/j.renene.2022.09.068
- Robledo, D., Vázquez-Delfín, E., Freile-Pelegrín, Y., Vásquez-Elizondo, R. M., Qui-Minet, Z. N., & Salazar-Garibay, A. (2021). Challenges and opportunities in relation to Sargassum events along the Caribbean Sea. Frontiers in Marine Science, 8(July), 1–13. https://doi.org/10.3389/fmars.2021.699664
- Rodil, I. F., Rodriguez, V. P., Bernal-Ibáñez, A., Pardiello, M., Soccio, F., & Gestoso, I. (2024). High contribution of an invasive macroalgae species to beach wrack CO2 emissions. Journal of Environmental Management, 367(May). https://doi.org/10.1016/j.jenvman.2024.122021
- Rodriguez, C., Alaswad, A., El-Hassan, Z., & Olabi, A. G. (2018). Improvement of methane production from P. canaliculata through mechanical pretreatment. Renewable Energy, 119, 73–78. https://doi.org/10.1016/j.renene.2017.12.025
- Suhaimi, M. S., Saat, A., & Wahid, M. A. (2017). Flammability and burning rates of low quality biogas at atmospheric condition. Jurnal Teknologi (Sciences & Engineering), 79(7–3), 15–20.
- Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015
- Tabassum, M. R., Xia, A., and Murphy, J. D. (2017). Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons. Energy, 140, 546–551. https://doi.org/10.1016/j.energy.2017.08.070
- Thompson, T. M., Young, B. R., and Baroutian, S. (2021). Enhancing biogas production from Caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere, 275, 130035. https://doi.org/10.1016/j.chemosphere.2021.130035
- Tonon, T., Machado, C. B., Webber, M., Webber, D., Smith, J., Pilsbury, A., Cicéron, F., Herrera-Rodriguez, L., Jimenez, E. M., Suarez, J. V., Ahearn, M., Gonzalez, F., and Allen, M. J. (2022). Biochemical and elemental composition of pelagic Sargassum biomass harvested across the Caribbean. Phycology, 2(1), 204–215. https://doi.org/10.3390/phycology2010011
- Vanegas, C. H., Hernon, A., and Bartlett, J. (2015). Enzymatic and organic acid pretreatment of seaweed: Effect on reducing sugars production and on biogas inhibition. International Journal of Ambient Energy, 36(1), 2–7. https://doi.org/10.1080/01430750.2013.820143
- Warguła, Ł., Wieczorek, B., Kukla, M., Krawiec, P., and Szewczyk, J. W. (2021). The problem of removing seaweed from the beaches: Review of methods and machines. Water (Switzerland), 13(5). https://doi.org/10.3390/w13050736
- Xu, M., Uludag-Demirer, S., Liu, Y., and Liao, W. (2025). Improving anaerobic digestion efficiency of animal manure through ball milling pretreatment. Agronomy, 15(2). https://doi.org/10.3390/agronomy15020305
- Yusuf, S. S., Ismail, M., and Abdullahi, J. (2020). Comparative study on the rate of flammability of biogas and firewood. American Journal of Energy Engineering, 8(3), 26. https://doi.org/10.11648/j.ajee.20200803.11.
- Zou, Y., Xu, X., Li, L., Yang, F., and Zhang, S. (2018). Enhancing methane production from Ulva lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures. Bioresource Technology, 254, 83–90. https://doi.org/10.1016/j.biortech.2017.12.054
ISSN 2984-7125 (Online)
ISSN 2244-4432 (Print)