HomeDAVAO RESEARCH JOURNALvol. 16 no. 1 (2025)

Utilizing Sargassum polycystumas Co-Feedstock to Enhance Methane Yield from Pig Dung in Anaerobic Digestion

Earl Francis A. Busilaoco | Wendyl M. Aligato | Jan Nico R. Gaslang | Hyrn G. Almoroto | Kristine Yhuri A. Libreta | Mervy Aretha Deon L. Loon | Camella A. Redulla | Darius Miguel Pederes | Angela Glaiza B. Pingcas | Rovie Joice M. Durante | Ricksterlie C. Verzosa

Discipline: agricultural sciences

 

Abstract:

Anaerobic digestion (AD) is a promising technology for biogas production, but optimizing feedstock composition is still a key challenge. The present study investigated invasive macroalgae Sargassum polycystum as a co-feedstock source combined with pig dung to enhance methane production. Three feedstock groups were assessed: (1) mechanically pretreated S. polycystum + pig dung, (2) untreated S. polycystum + pig dung, and (3) pig dung alone. Seaweed feedstocks were collected in Dahican beachline, and pig manure was sourced from a livestock auction market in the City of Mati, Davao Oriental, the Philippines. Feedstocks were loaded and inoculated in an improvised biodigester. Methane concentrations were measured using a gas analyzer, and a flammability test was conducted to evaluate biogas quality. Kruskal-Wallis test revealed significant differences in methane production across treatments (H(2) = 9.116, p = 0.010). The pretreated group exhibited the highest methane concentration (>9,999.00 ppm), followed by the untreated group (8,931.75 ppm), while the control group produced the lowest yield (3,644.25 ppm). Post hoc analysis confirmed a significant difference in methane yield in the pretreated group compared to the control (p = 0.010). Only biogas from the pretreated group ignited, producing a blue flame indicating methane-rich, high-quality biogas. These findings highlight the dual benefit of using Sargassum macroalgae as co-feedstock, mitigating seaweed overgrowth in coastal areas and improving biogas production efficiency in pig manure. The study underscores the potential of seaweed-based co-digestion as an accessible, sustainable energy solution. Future research may explore long-term process stability, gas composition analysis, and the economic viability of large-scale applications.



References:

  1. Anacleto, T. M., Kozlowsky-Suzuki, B., Björn, A., Yekta, S. S., Masuda, L. S. M., de Oliveira, V. P., & Enrich-Prast, A. (2024). Methane yield response to pretreatment is dependent on substrate chemical composition: A meta-analysis on anaerobic digestion systems. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-024-51603-9
  2. Anggono, W. (2017). Behaviour of biogas containing nitrogen on flammability limits and laminar burning velocities. International Journal of Renewable Energy Research, 7(1), 305–310. https://doi.org/10.20508/ijrer.v7i1.5509.g6990
  3. AP, Y., Farghali, M., Mohamed, I. M. A., Iwasaki, M., Tangtaweewipat, S., Ihara, I., Sakai, R., & Umetsu, K. (2021). Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: Influences of mechanical, chemical, and biological pretreatments. Biochemical Engineering Journal, 175(May), 108140. https://doi.org/10.1016/j.bej.2021.108140
  4. Bohutskyi, P., Betenbaugh, M. J., & Bouwer, E. J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 155, 366–372. https://doi.org/10.1016/j.biortech.2013.12.095
  5. Castro, Y. A., Rodríguez, A., & Rivera, E. (2022). Biomethane production kinetics during the anaerobic co-digestion of Sargassum spp. and food waste using batch and fed-batch systems in Punta Cana, Dominican Republic. Materials for Renewable and Sustainable Energy, 11(3), 287–297. https://doi.org/10.1007/s40243-022-00224-1
  6. Cheong, K. L., Zhang, Y., Li, Z., Li, T., Ou, Y., Shen, J., Zhong, S., & Tan, K. (2023). Role of polysaccharides from marine seaweed as feed additives for methane mitigation in ruminants: A critical review. Polymers, 15(15). https://doi.org/10.3390/polym15153153
  7. Cunha dos Santos, T., Macho Pompermayer, L., Pimentel Santos, A. L. V., Campos Martins, R. C., Cavalcanti, D. N., Wolff Bueno, G., Madeira Sanchez, A. L., & Concha Obando, J. M. (2024). Dermocosmetic properties of bioproducts from Sargassum macroalgae: Chemical aspects, challenges, and opportunities. Frontiers in Marine Science, 11(November). https://doi.org/10.3389/fmars.2024.1500778
  8. Cunha dos Santos, T., Vale, T. M., Calvacanti, D. N., Machado, L. P., Barbarino, E., Martins, R. C. C., & Obando, J. M. C. (2022). Metabólitos bioativos e aplicações biotecnológicas de macroalgas do gênero Sargassum: Uma revisão. Revista Virtual de Química, 15(4), 1–18.
  9. Dahunsi, S. O. (2019). Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components. Bioresource Technology, 280(January), 18–26. https://doi.org/10.1016/j.biortech.2019.02.006
  10. Devault, D. A., Pierre, R., Marfaing, H., Dolique, F., & Lopez, P. J. (2021). Sargassum contamination and consequences for downstream uses: A review. Journal of Applied Phycology, 33(1), 567–602. https://doi.org/10.1007/s10811-020-02250-w
  11. Farghali, M., Mohamed, I. M. A., Osman, A. I., & Rooney, D. W. (2023). Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environmental Chemistry Letters, 21(1). Springer International Publishing. https://doi.org/10.1007/s10311-022-01520-y
  12. Fauziee, N. A. M., Chang, L. S., Wan Mustapha, W. A., Md Nor, A. R., & Lim, S. J. (2021). Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata, and Padina boryana). International Journal of Biological Macromolecules, 167. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.11.067
  13. Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69–76. https://doi.org/10.1093/af/vfy034
  14. Intergovernmental Panel on Climate Change [IPCC]. (2013). Summary for policymakers. In Climate change 2021—The physical science basis. https://doi.org/10.1515/ci-2021-0407
  15. Irfan, M., Wahab, I. H., Sarni, Subur, R., & Akbar, N. (2019). Seaweed Sargassum sp. as material for biogas production. AACL Bioflux, 12(5), 2015–2019.
  16. Jameel, M. K., Mustafa, M. A. A., H. S., Mohammed, A. J., Ghazy, H., Shakir, M. N., Lawas, A. M., Mohammed, S. K., Idan, A. H., Mahmoud, Z. H., Sayadi, H., & Kianfar, E. (2024). Biogas: Production, properties, applications, economic and challenges: A review. Results in Chemistry, 7(January), 101549. https://doi.org/10.1016/j.rechem.2024.101549
  17. Jelani, F., Walker, G., & Akunna, J. (2023). Effects of thermo-chemical and enzymatic pretreatment of tropical seaweeds and freshwater macrophytes on biogas and bioethanol production. International Journal of Environmental Science and Technology, 20(12), 12999–13008. https://doi.org/10.1007/s13762-023-04843-7
  18. Karthikeyan, P. K., Bandulasena, H. C. H., & Radu, T. (2024). A comparative analysis of pretreatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste. Industrial Crops and Products, 215(May), 118591. https://doi.org/10.1016/j.indcrop.2024.118591
  19. Keita, O., & Kamano, M. (2024). A biogas production model from pig manure: Comparison between modern and local pig manure in N’Zérékoré City, Republic of Guinea. European Journal of Advances in Engineering and Technology, 11(10), 59–69.
  20. Ketut, C. N., Agung, S., Mekro, P., Heri, H., & Bachtiar. (2018). The flame characteristics of the biogas produced through the digester method with various starters. IOP Conference Series: Materials Science and Engineering, 299(1). https://doi.org/10.1088/1757-899X/299/1/012091
  21. Kumar, M., Sun, Y., Rathour, R., Pandey, A., Thakur, I. S., & Tsang, D. C. W. (2020). Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 716, 137116. https://doi.org/10.1016/j.scitotenv.2020.137116
  22. Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240(January), 120–137. https://doi.org/10.1016/j.apenergy.2019.01.243
  23. Maneein, S., Milledge, J. J., Nielsen, B. V., & Harvey, P. J. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4(4). https://doi.org/10.3390/fermentation4040100
  24. Marshall, A., & Oyekola, O. (2025). Effects of the chemical and mechanical pre-treatment of brown seaweed on biomethane yields in a batch configuration. Biomass, 5(7), 1–15. https://doi.org/10.3390/biomass5010007
  25. McKennedy, J., & Sherlock, O. (2015). Anaerobic digestion of marine macroalgae: A review. Renewable and Sustainable Energy Reviews, 52, 1781–1790. https://doi.org/10.1016/j.rser.2015.07.101
  26. Milledge, J. J., Maneein, S., López, E. A., & Bartlett, D. (2020). Sargassum inundations in Turks and Caicos: Methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies, 13(6). https://doi.org/10.3390/en13061523
  27. Milledge, J. J., Nielsen, B. V., Sadek, M. S., & Harvey, P. J. (2018). Effect of freshwater washing pretreatment on Sargassum muticum as a feedstock for biogas production. Energies, 11(7). https://doi.org/10.3390/en11071771
  28. Naveed Zahir Creativity. (2019). How to make free gas from fruit and vegetables waste | Bio gas plant |.
  29. Oliveira, J. V., Alves, M. M., & Costa, J. C. (2014). Design of experiments to assess pretreatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresource Technology, 162, 323–330. https://doi.org/10.1016/j.biortech.2014.03.155
  30. Orhorhoro, E. K., & Oghoghorie, O. (2024). Enhancing biogas yield through anaerobic co-digestion of animal manure and seaweed. Progress in Energy and Environment, 28(1), 1–22. https://doi.org/10.37934/progee.28.1.122
  31. Rivera-Hernández, Y., Hernández-Eugenio, G., Balagurusamy, N., & Espinosa-Solares, T. (2022). Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste. Renewable Energy, 199(November), 1336–1344. https://doi.org/10.1016/j.renene.2022.09.068
  32. Robledo, D., Vázquez-Delfín, E., Freile-Pelegrín, Y., Vásquez-Elizondo, R. M., Qui-Minet, Z. N., & Salazar-Garibay, A. (2021). Challenges and opportunities in relation to Sargassum events along the Caribbean Sea. Frontiers in Marine Science, 8(July), 1–13. https://doi.org/10.3389/fmars.2021.699664
  33. Rodil, I. F., Rodriguez, V. P., Bernal-Ibáñez, A., Pardiello, M., Soccio, F., & Gestoso, I. (2024). High contribution of an invasive macroalgae species to beach wrack CO2 emissions. Journal of Environmental Management, 367(May). https://doi.org/10.1016/j.jenvman.2024.122021
  34. Rodriguez, C., Alaswad, A., El-Hassan, Z., & Olabi, A. G. (2018). Improvement of methane production from P. canaliculata through mechanical pretreatment. Renewable Energy, 119, 73–78. https://doi.org/10.1016/j.renene.2017.12.025
  35. Suhaimi, M. S., Saat, A., & Wahid, M. A. (2017). Flammability and burning rates of low quality biogas at atmospheric condition. Jurnal Teknologi (Sciences & Engineering), 79(7–3), 15–20.
  36. Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859. https://doi.org/10.1016/j.rser.2013.12.015
  37. Tabassum, M. R., Xia, A., and Murphy, J. D. (2017). Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons. Energy, 140, 546–551. https://doi.org/10.1016/j.energy.2017.08.070
  38. Thompson, T. M., Young, B. R., and Baroutian, S. (2021). Enhancing biogas production from Caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere, 275, 130035. https://doi.org/10.1016/j.chemosphere.2021.130035
  39. Tonon, T., Machado, C. B., Webber, M., Webber, D., Smith, J., Pilsbury, A., Cicéron, F., Herrera-Rodriguez, L., Jimenez, E. M., Suarez, J. V., Ahearn, M., Gonzalez, F., and Allen, M. J. (2022). Biochemical and elemental composition of pelagic Sargassum biomass harvested across the Caribbean. Phycology, 2(1), 204–215. https://doi.org/10.3390/phycology2010011
  40. Vanegas, C. H., Hernon, A., and Bartlett, J. (2015). Enzymatic and organic acid pretreatment of seaweed: Effect on reducing sugars production and on biogas inhibition. International Journal of Ambient Energy, 36(1), 2–7. https://doi.org/10.1080/01430750.2013.820143
  41. Warguła, Ł., Wieczorek, B., Kukla, M., Krawiec, P., and Szewczyk, J. W. (2021). The problem of removing seaweed from the beaches: Review of methods and machines. Water (Switzerland), 13(5). https://doi.org/10.3390/w13050736
  42. Xu, M., Uludag-Demirer, S., Liu, Y., and Liao, W. (2025). Improving anaerobic digestion efficiency of animal manure through ball milling pretreatment. Agronomy, 15(2). https://doi.org/10.3390/agronomy15020305
  43. Yusuf, S. S., Ismail, M., and Abdullahi, J. (2020). Comparative study on the rate of flammability of biogas and firewood. American Journal of Energy Engineering, 8(3), 26. https://doi.org/10.11648/j.ajee.20200803.11.
  44. Zou, Y., Xu, X., Li, L., Yang, F., and Zhang, S. (2018). Enhancing methane production from Ulva lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures. Bioresource Technology, 254, 83–90. https://doi.org/10.1016/j.biortech.2017.12.054