Nanocellulose and Phycocyanin as Viable Additives for Electrospun Fibers: A Review of Functional Properties, Electrospinning Parameters, and Physicochemical Characterization
Tabitha P. Vergel De Dios | Mia A. Luares | Myiesha Dane C. Calibara | Samuel Nelson G. Arboleda | John Ray C. Estrellado
Discipline: Development Studies
Abstract:
This literature review aims to highlight the developments and fu-ture directions in the use of nanocellulose and phycocyanin as elec-trospinning additives for biomedical applications, specifically in wound healing. Nanocellulose, a cellulose derivative known for its surface area, mechanical strength, and biocompatibility, is proposed as a sustainable alternative to enhancers of mechanical properties. Phycocyanin, a blue pigment from cyanobacteria, possesses anti-in-flammatory, antioxidant, and antimicrobial properties, which may potentially enhance the performance of nanocellulose. The combi-nation of the two components in electrospun fibers demonstrates significant promise for effective wound healing applications. How-ever, progress is limited by the scarcity of experimental studies in-tegrating both materials. One of the future directions of the study is improving the stability and shelf-life of phycocyanin within nano-fibers, including approaches such as encapsulation and protective coatings. Scaling and manufacturing challenges, including high en-ergy consumption and harsh chemical treatments in nanocellulose extraction, as well as the parameters of electrospinning, need to be addressed to enable mainstream commercialization. Further explo-ration of sustainable and purely physical extraction methods for nanocellulose is also critical for environmentally friendly alterna-tives to process scale-up and intensification.
References:
- Abazari, M. F., Gholizadeh, S., Karizi, S. Z., Bir-gani, N. H., Abazari, D., Paknia, S., De-rakhshankhah, H., Allahyari, Z., Amini, S. M., Hamidi, M., & Delattre, C. (2021). Re-cent Advances in Cellulose-Based Struc-tures as the Wound-Healing Biomaterials: A Clinically Oriented review. Applied Sci-ences, 11(17), 7769. https://doi.org/10.3390/app11177769
- Adli, S. A., Ali, F., Azmi, A. S., Anuar, H., Nasir, N. a. M., Hasham, R., & Idris, M. K. H. (2020). Development of biodegradable cosmetic patch using a polylactic Acid/Phycocya-nin–Alginate composite. Polymers, 12(8), 1669. https://doi.org/10.3390/polym12081669
- Ahmed, S., Khan, R. A., & Rashid, T. U. (2025). Cellulose nanocrystal based electrospun nanofiber for biomedical applications–A review. Carbohydrate Polymers, 348(Part A), 122838. https://doi.org/10.1016/j.car-bpol.2024.122838
- Aruna, S. T., Balaji, L. S., Senthil Kumar, S., & Shri Prakash, B. (2017). Electrospinning in solid oxide fuel cells –A review. Renewa-ble and Sustainable Energy Reviews, 67, 673–682. https://doi.org/10.1016/j.rser.2016.09.003
- Bakar, S. S. S., Fong, K. C., Eleyas, A., & Nazeri, M. F. M. (2018). Effect of voltage and flow rate electrospinning parameters on polyacrylonitrile electrospun fibers. IOP Conference Series Materials Science and Engineering, 318, 012076. https://doi.org/10.1088/1757-899x/318/1/012076
- Bülbül, E. Ö., Okur, M. E., Okur, N. Ü., & Siafaka, P. I. (2022). Traditional and advanced wound dressings: physical characteriza-tion and desirable properties for wound healing. In Elsevier eBooks(pp. 19–50). https://doi.org/10.1016/b978-0-323-90514-5.00020-1
- Chen, K., Hu, H., Zeng, Y., Pan, H., Wang, S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022). Recent advances in electrospun nanofibers for wound dressing. European Polymer Journal, 178, 111490. https://doi.org/10.1016/j.eur-polymj.2022.111490
- Couret, L., Irle, M., Belloncle, C., & Cathala, B. (2017). Extraction and characterization of cellulose nanocrystals from post-con-sumer wood fiberboard waste. Cellulose, 24(5), 2125–2137. https://doi.org/10.1007/s10570-017-1252-7
- Das, S. K., Chakraborty, S., Naskar, S., & Ra-jabalaya, R. (2021). Techniques and meth-ods used for the fabrication of bionano-composites. In Elsevier eBooks(pp. 17–43). https://doi.org/10.1016/b978-0-12-821280-6.00007-6
- De Vrieze, S., Van Camp, T., Nelvig, A. et al. The effect of temperature and humidity on electrospinning. J Mater Sci 44, 1357–1362 (2009). https://doi.org/10.1007/s10853-008-3010-6
- Dranseikienė, D., Balčiūnaitė-Murzienė, G., Karosienė, J., Morudov, D., Juodžiukynienė, N., Hudz, N., Ger‑butavičienė, R. J., & Savickienė, N. (2022). Cyano-Phycocyanin: Mechanisms of ac-tion on human skin and future perspec-tives in medicine. Plants, 11(9), 1249. https://doi.org/10.3390/plants11091249
- Dumanli, A. G. (2016). Nanocellulose and its Composites for Biomedical Applications. Current Medicinal Chemistry, 24(5), 512–528.de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER 3837Volume 6| Number 8| August | 2025https://doi.org/10.2174/0929867323666161014124008
- Fernandes, R., Campos, J., Serra, M., Fidalgo, J., Almeida, H., Casas, A., Toubarro, D., & Bar-ros, A. I. R. N. A. (2023). Exploring the ben-efits of phycocyanin: from spirulina culti-vation to its widespread applications. Pharmaceuticals, 16(4), 592. https://doi.org/10.3390/ph16040592
- Fu, Y., and Zhu, J. (2021). "Green design and re-cycling systems for solving the dilemma of disposable chopsticks waste caused by online food delivery: A review," BioRe-sources 16(4), 8640-8656.https://doi.org/10.15376/bio-res.16.4.fu
- Gao, M., Yang, Z., Liang, W., Ao, T., & Chen, W. (2023). Recent advanced freestanding pseudocapacitive electrodes for efficient capacitive deionization. Separation and Purification Technology, 324, 124577. https://doi.org/10.1016/j.sep-pur.2023.124577
- Ghomi, E. R., Khalili, S., Khorasani, S. N., Neisiany, R. E., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Poly-mer Science, 136(27). https://doi.org/10.1002/app.47738
- Goswami, R., Singh, S., Narasimhappa, P., Rama-murthy, P. C., Mishra, A., Mishra, P. K., Joshi, H. C., Pant, G., Singh, J., Kumar, G., Khan, N. A., & Yousefi, M. (2024). Nanocel-lulose: A comprehensive review investi-gating its potential as an innovative mate-rial for water remediation. International Journal of Biological Macromolecules, 254(Part 3), 127465. https://doi.org/10.1016/j.ijbi-omac.2023.127465
- Hao, Q., Schossig, J., Davide, T., Towolawi, A., Zhang, C., & Lu, P. (2024). Gravity-Driven Ultrahigh-Speed Electrospinning for the Production of Ethyl Cellulose Fibers with Tunable Porosity for Oil Absorption. ACS Sustainable Chemistry & Engineering, 13(1), 507–517. https://doi.org/10.1021/acssuschemeng.4c08259
- Hsieh, Y. (2018). Cellulose Nanofibers: Electro-spinning and Nanocellulose Self‑Assem‑blies. Advanced Green Composites, 67–95. https://doi.org/10.1002/9781119323327.ch4
- Izadi, M., & Latifi, E. (2022). Comparison of the antibacterial properties of phycocyanin and its SNPs and their effects on rat blood cells and liver enzymes. Beni-Suef Univer-sity Journal of Basic and Applied Sciences, 11(1). https://doi.org/10.1186/s43088-022-00236-w
- Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., & Xu, Y. (2021). Preparation of electro-spun polyvinyl Alcohol/Nanocellulose composite film and evaluation of its bio-medical performance. Gels, 7(4), 223. https://doi.org/10.3390/gels7040223
- Jodnok, S., Choeisai, P., Kruehong, C., & Choeisai, K. (2021b). Recycling disposable bamboo chopstick waste as a renewable energy re-source: Case study in Khon Kaen Univer-sity, Thailand. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00101-y
- Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., & Gałęski, A. (2018). Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Poly-mer Science, 87,197–227. https://doi.org/10.1016/j.progpolym-sci.2018.07.008
- Kaya, S., & Derman, S. (2023). İDEAL YARA ÖRTÜSÜNÜN ÖZELLİKLERİ. Ankara Uni-versitesi Eczacilik Fakultesi Dergisi, 47(3), 5. https://doi.org/10.33483/jfpau.1253376Khandual, S., Sanchez, E. O. L., Andrews, H. E., & De La Rosa, J. D. P. (2021). Phycocyanin content and nutritional profile of Arthro-spira platensis from Mexico: efficient ex-traction process and stability evaluation of phycocyanin. BMC Chemistry, 15(1). https://doi.org/10.1186/s13065-021-00746-1de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER3838Volume 6| Number 8| August| 2025
- Khodayari, A., Vats, S., Mertz, G., Schnell, C. N., Fuentes Rojas, C., & Seveno, D. (2025). Electrospinning of cellulose nanocrystals: Procedure and optimization. Carbohy-drate Polymers, 347, 122698. https://doi.org/10.1016/j.car-bpol.2024.122698
- Kumar, P., Miller, K., Kermanshahi-Pour, A., Brar, S. K., Beims, R. F., & Xu, C. C. (2022). Nanocrystalline cellulose derived from spruce wood: Influence of process param-eters. International Journal of Biological Macromolecules, 221, 426–434. https://doi.org/10.1016/j.ijbi-omac.2022.09.017
- Leong, M., Kong, Y., Harun, M., Looi, C., & Wong, W. (2023). Current advances of nanocellu-lose application in biomedical field. Carbo-hydrate Research, 532, 108899. https://doi.org/10.1016/j.carres.2023.108899
- Luo, C. (2013). China’s 80 billion disposable chopsticks a burden on forests. Hong Kong: South China Morning Post. https://www.scmp.com/news/china/ar-ticle/1188299/chinas-80-billion-dispos-able-chopsticks-burden-forests
- Meng, Z., Liu, J., Zhang, R., Ren, Y., Qi, Q., Cui, B., Gou, Y., Zhuang, S., Zhao, T., Liu, Q., Bao, X., & Ren, C. (2025). Phycocyanin-based mul-tifunctional hydrogel with self-healing, hemostatic, antioxidative, and antibacte-rial activity for wound healing. Interna-tional Journal of Biological Macromole-cules, 310(Part 2), 143254. https://doi.org/10.1016/j.ijbi-omac.2025.143254
- Moon, R.J., Schueneman, G.T. & Simonsen, J. Overview of Cellulose Nanomaterials, Their Capabilities and Applications. JOM 68, 2383–2394 (2016). https://doi.org/10.1007/s11837-016-2018-7
- Mouro, C., & Gouveia, I. C. (2023). Electrospun wound dressings with antibacterial func-tion: a critical review of plant extract and essential oil incorporation. Critical Re-views in Biotechnology, 44(4), 641–659. https://doi.org/10.1080/07388551.2023.2193859
- Muraleedharan, M. N., Karnaouri, A., Piatkova, M., Ruiz-Caldas, M., Matsakas, L., Liu, B., Rova, U., Christakopoulos, P., & Mathew, A. P. (2021). Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic ac-tivity of LPMO and endoglucanases. Inter-national Journal of Biological Macromole-cules, 183, 101–109. https://doi.org/10.1016/j.ijbi-omac.2021.04.136
- Mutlu, B., Çaylak, S., & Duman, Ş. (2022). Incor-poration of cerium oxide into hydroxyap-atite/chitosan composite scaffolds for bone repair. https://doiserbia.nb.rs/Arti-cle.aspx?ID=1820-61312203207M
- Mutlu, G., Calamak, S., Ulubayram, K., & Guven, E. (2017). Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. Journal of Drug Delivery Science and Technology, 43, 185–193. https://doi.org/10.1016/j.jddst.2017.09.017
- Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra, T. S., & Lim, K. (2021). Nanocellu-lose, a versatile platform: From the deliv-ery of active molecules to tissue engineer-ing applications. Bioactive Materials, 9, 566–589. https://doi.org/10.1016/j.bio-actmat.2021.07.006
- Pellegrino, P., Bramanti, A. P., Farella, I., Cas-cione, M., De Matteis, V., Della Torre, A., Quaranta, F., & Rinaldi, R. (2022). Pulse-Atomic Force Lithography: a powerful nanofabrication technique to fabricate constant and Varying-Depth nanostruc-tures. Nanomaterials, 12(6), 991. https://doi.org/10.3390/nano12060991
- Raju, V., Revathiswaran, R., Subramanian, K. S., Parthiban, K. T., Chandrakumar, K., Anoop, E. V., & Chirayil, C. J. (2023). Isolation and characterization of nanocellulose from se-lected hardwoods, viz., Eucalyptus tereti-cornis Sm. and Casuarina equisetifolia L., by steam explosion method. Scientific Re-ports, 13(1). https://doi.org/10.1038/s41598-022-26600-5
- Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Ba-de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER 3839Volume 6| Number 8| August | 2025
- tikh, H., El-Kashif, E., El-Khatib, S., & Me-hanny, S. (2023). Influence of electrospin-ning parameters on biopolymers nano-fibers, with emphasis on cellulose & chi-tosan. Heliyon, 9(6), e17051. https://doi.org/10.1016/j.heli-yon.2023.e17051
- Resch, A., Staud, C., & Radtke, C. (2021). Nano-cellulose‑based wound dressing for con‑servative wound management in children with second‑degree burns. International Wound Journal, 18(4), 478–486. https://doi.org/10.1111/iwj.13548
- Ribeiro, A. S., Costa, S. M., Ferreira, D. P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C., & Fangueiro, R. (2021). Chitosan/nanocellulose electro-spun fibers with enhanced antibacterial and antifungal activity for wound dressing applications. Reactive and Functional Pol-ymers/Reactive & Functional Polymers, 159, 104808. https://doi.org/10.1016/j.reactfunct-polym.2020.104808
- Safari, R., Amiri, Z. R., & Kenari, R. E. (2020). An-tioxidant and antibacterial activities of C-phycocyanin from common name Spir-ulina platensis. Iranian Journal of Fisheries and Sciences, 19(4), 1911–1927. https://doi.org/10.22092/ijfs.2019.118129
- Shankaran, D. R. (2018). Cellulose nanocrystals for health care applications. In Elsevier eBooks (pp. 415–459). https://doi.org/10.1016/b978-0-08-101971-9.00015-6
- Shanmugam, A., Sigamani, S., Venkatachalam, H., Jayaraman, J., & Ramamurthy, D. (2017). Antibacterial activity of extracted phycocyanin from Oscillatoria sp. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2017.70310
- Sihag, S. S., Pal, J., & Yadav, M. (2022). Extrac-tion and Characterization of Nanocellu-lose from Wheat Straw: Facile Approach. Journal of Water and Environmental Nano-technology, 7(3), 317-331. https://doi.org/10.22090/jwent.2022.03.007
- Singh, H., Verma, A. K., Trivedi, A. K., & Gupta, M. (2023). Characterization of nanocellulose isolated from bamboo fibers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.300
- Singh, Y. P., Dasgupta, S., Nayar, S., & Bhaskar, R. (2020). Optimization of electrospinning process & parameters for producing de-fect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 31(6), 781–803. https://doi.org/10.1080/09205063.2020.1718824
- Suzuki, A., Sasaki, C., Asada, C., & Nakamura, Y. (2018). Production of cellulose nanofibers from Aspen and Bode chopsticks using a high temperature and high pressure steam treatment combined with milling. Carbohydrate Polymers, 194, 303–310. https://doi.org/10.1016/j.car-bpol.2018.04.047
- Tamo, A. K. (2024). Nanocellulose-Based Hy-drogels as Versatile Bio-Based Materials with Interesting Functional Properties for Tissue Engineering Applications. Journal of Materials Chemistry B, 12(32), 7692–7759. https://doi.org/10.1039/d4tb00397g
- The Economist. (2014, September 13). Sticks in the gullet. The Economist. https://www.econo-mist.com/china/2014/09/13/sticks-in-the-gullet
- Tripatanasuwan, S., Zhong, Z., & Reneker, D. H. (2007). Effect of evaporation and solidifi-cation of the charged jet in electrospin-ning of poly(ethylene oxide) aqueous so-lution. Polymer, 48(19), 5742–5746. https://doi.org/10.1016/j.poly-mer.2007.07.045
- Trushina, D. B., Borodina, T. N., Belyakov, S., & Antipina, M. N. (2022). Calcium carbonate vaterite particles for drug delivery: Ad-vances and challenges. Materials Today Advances, 14, 100214. https://doi.org/10.1016/j.mtadv.2022.100214de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER3840Volume 6| Number 8| August| 2025
- Usov, I., Nyström, G., Adamcik, J., Handschin, S., Schütz, C., Fall, A., Bergström, L., & Mez-zenga, R. (2015). Understanding nanocel-lulose chirality and structure–properties relationship at the single fibril level. Na-ture Communications, 6(1). https://doi.org/10.1038/ncomms8564
- Vergel De Dios, T. P., Luares, M. A., Arboleda, W., Calibara, M. D. C., & Estrellado, J. R. C. (2025). Multi-Objective Taguchi Optimi-zation of Electrospinning Parameters for the Development of Poly-(vinyl alco-hol)/Waste Wooden Utensil Nanocellu-lose/Phycocyanin Electrospun Fibers. In-ternational Journal of Multidisciplinary: Applied Business and Education Research, 6(6), 3045-3069. https://doi.org/10.11594/ijma-ber.06.06.31
- Wang, D., Cheng, W., Yue, Y., Xuan, L., Ni, X., & Han, G. (2018). Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Alcohol Nanofibrous Films and their Exploration to Metal Ions Adsorption. Polymers, 10(10), 1046. https://doi.org/10.3390/polym10101046
- Wcw-Admin-Support. (2023, April 28). Types of wound dressings and when to use them. West Coast Wound & Skin Care. https://westcoastwound.com/types-of-wound-dressings-and-when-to-use-them/
- Yang, G.-Z., Li, H.-P., Yang, J.-H., Wan, J., & Yu, D.-G. (2017). Influence of working tempera-ture on the formation of electrospun poly-mer nanofibers. Nanoscale Research Let-ters, 12(1), 55. https://doi.org/10.1186/s11671-016-1824-8
- Zahra, F. T., Zhang, Y., Ajayi, A. O., Quick, Q., & Mu, R. (2024). Optimization of electro-spinning parameters for lower molecular weight polymers: A case study on polyvi-nylpyrrolidone. Polymers, 16(9), 1217. https://doi.org/10.3390/polym16091217
- Zaman, H. U., Islam, J., Khan, M. A., & Khan, R. A. (2011). Physico-mechanical properties of wound dressing material and its biomedi-cal application. Journal of the Mechanical Behavior of Biomedical Materials/Journal of Mechanical Behavior of Biomedical Ma-terials, 4(7), 1369–1375. https://doi.org/10.1016/j.jmbbm.2011.05.007
- Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C., & Deng, Y. (2013). Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydrate Polymers, 97(2), 695–702. https://doi.org/10.1016/j.car-bpol.2013.05.050
- Zhou, R., Ma, Y., Yang, M., Cheng, Y., Ma, X., Li, B., Zhang, Y., Cui, X., Liu, M., Long, Y., & Li, C. (2025). Wound dressings using electro-spun nanofibers: mechanisms, applica-tions, and future directions. European Pol-ymer Journal,113900. https://doi.org/10.1016/j.eur-polymj.2025.113900