HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 8 (2025)

Nanocellulose and Phycocyanin as Viable Additives for Electrospun Fibers: A Review of Functional Properties, Electrospinning Parameters, and Physicochemical Characterization

Tabitha P. Vergel De Dios | Mia A. Luares | Myiesha Dane C. Calibara | Samuel Nelson G. Arboleda | John Ray C. Estrellado

Discipline: Development Studies

 

Abstract:

This literature review aims to highlight the developments and fu-ture directions in the use of nanocellulose and phycocyanin as elec-trospinning additives for biomedical applications, specifically in wound healing. Nanocellulose, a cellulose derivative known for its surface area, mechanical strength, and biocompatibility, is proposed as a sustainable alternative to enhancers of mechanical properties. Phycocyanin, a blue pigment from cyanobacteria, possesses anti-in-flammatory, antioxidant, and antimicrobial properties, which may potentially enhance the performance of nanocellulose. The combi-nation of the two components in electrospun fibers demonstrates significant promise for effective wound healing applications. How-ever, progress is limited by the scarcity of experimental studies in-tegrating both materials. One of the future directions of the study is improving the stability and shelf-life of phycocyanin within nano-fibers, including approaches such as encapsulation and protective coatings. Scaling and manufacturing challenges, including high en-ergy consumption and harsh chemical treatments in nanocellulose extraction, as well as the parameters of electrospinning, need to be addressed to enable mainstream commercialization. Further explo-ration of sustainable and purely physical extraction methods for nanocellulose is also critical for environmentally friendly alterna-tives to process scale-up and intensification.



References:

  1. Abazari,  M.  F.,  Gholizadeh,  S.,  Karizi,  S.  Z.,  Bir-gani,  N.  H.,  Abazari,  D.,  Paknia,  S.,  De-rakhshankhah,  H.,  Allahyari,  Z.,  Amini,  S. M.,  Hamidi,  M.,  &  Delattre,  C.  (2021).  Re-cent  Advances  in  Cellulose-Based  Struc-tures as the Wound-Healing Biomaterials: A  Clinically  Oriented  review. Applied  Sci-ences, 11(17), 7769. https://doi.org/10.3390/app11177769
  2. Adli, S. A., Ali, F., Azmi, A. S., Anuar, H., Nasir, N. a. M., Hasham, R., & Idris, M. K. H. (2020). Development  of  biodegradable  cosmetic patch  using  a  polylactic  Acid/Phycocya-nin–Alginate  composite. Polymers,  12(8), 1669. https://doi.org/10.3390/polym12081669
  3. Ahmed,  S.,  Khan,  R.  A.,  &  Rashid,  T.  U.  (2025). Cellulose  nanocrystal  based  electrospun nanofiber  for  biomedical  applications–A review. Carbohydrate  Polymers,  348(Part A), 122838. https://doi.org/10.1016/j.car-bpol.2024.122838
  4. Aruna, S. T., Balaji, L. S., Senthil Kumar, S., & Shri Prakash,   B.   (2017).   Electrospinning   in solid  oxide  fuel  cells –A  review. Renewa-ble  and  Sustainable  Energy  Reviews,  67, 673–682. https://doi.org/10.1016/j.rser.2016.09.003
  5. Bakar, S. S. S., Fong, K. C., Eleyas, A., & Nazeri, M. F.  M.  (2018).  Effect  of  voltage  and  flow rate electrospinning parameters on polyacrylonitrile  electrospun  fibers. IOP Conference  Series  Materials  Science  and Engineering, 318, 012076. https://doi.org/10.1088/1757-899x/318/1/012076
  6. Bülbül, E.  Ö., Okur, M. E., Okur, N. Ü., & Siafaka, P.   I.   (2022).   Traditional   and   advanced wound  dressings:  physical  characteriza-tion  and  desirable  properties  for  wound healing.  In Elsevier  eBooks(pp.  19–50). https://doi.org/10.1016/b978-0-323-90514-5.00020-1
  7. Chen,  K.,  Hu,  H.,  Zeng,  Y.,  Pan,  H.,  Wang,  S., Zhang, Y., Shi, L., Tan, G., Pan, W., & Liu, H. (2022).  Recent  advances  in  electrospun nanofibers for wound dressing. European Polymer Journal, 178, 111490. https://doi.org/10.1016/j.eur-polymj.2022.111490
  8. Couret,  L.,  Irle,  M.,  Belloncle,  C.,  &  Cathala,  B. (2017). Extraction and characterization of cellulose    nanocrystals    from    post-con-sumer  wood  fiberboard  waste. Cellulose, 24(5), 2125–2137. https://doi.org/10.1007/s10570-017-1252-7
  9. Das,  S.  K.,  Chakraborty,  S.,  Naskar,  S.,  &  Ra-jabalaya, R. (2021). Techniques and meth-ods  used  for  the  fabrication  of  bionano-composites.  In Elsevier  eBooks(pp.  17–43). https://doi.org/10.1016/b978-0-12-821280-6.00007-6
  10. De Vrieze, S., Van Camp,  T., Nelvig, A. et al. The effect  of  temperature  and  humidity  on electrospinning. J   Mater   Sci   44,   1357–1362 (2009). https://doi.org/10.1007/s10853-008-3010-6
  11. Dranseikienė,  D.,  Balčiūnaitė-Murzienė,  G., Karosienė,   J.,   Morudov,   D., Juodžiukynienė,  N.,  Hudz,  N.,  Ger‑butavičienė, R. J., & Savickienė, N. (2022). Cyano-Phycocyanin:   Mechanisms   of   ac-tion  on  human  skin  and  future  perspec-tives   in   medicine. Plants,   11(9),   1249. https://doi.org/10.3390/plants11091249
  12. Dumanli,  A.  G.  (2016).  Nanocellulose  and  its Composites  for  Biomedical  Applications. Current  Medicinal  Chemistry, 24(5),  512–528.de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER 3837Volume 6| Number 8| August | 2025https://doi.org/10.2174/0929867323666161014124008
  13. Fernandes,  R.,  Campos,  J.,  Serra,  M.,  Fidalgo,  J., Almeida, H., Casas, A., Toubarro, D., & Bar-ros, A. I. R. N. A. (2023). Exploring the ben-efits of  phycocyanin: from  spirulina culti-vation   to   its   widespread   applications. Pharmaceuticals, 16(4), 592. https://doi.org/10.3390/ph16040592
  14. Fu, Y., and Zhu, J. (2021). "Green design and re-cycling systems for solving the dilemma of disposable  chopsticks  waste  caused  by online  food  delivery:  A  review," BioRe-sources 16(4), 8640-8656.https://doi.org/10.15376/bio-res.16.4.fu
  15. Gao,  M.,  Yang,  Z.,  Liang,  W.,  Ao,  T.,  &  Chen,  W. (2023).   Recent   advanced   freestanding pseudocapacitive  electrodes  for  efficient capacitive   deionization.   Separation   and Purification    Technology,    324,    124577. https://doi.org/10.1016/j.sep-pur.2023.124577
  16. Ghomi,   E.   R.,   Khalili,   S.,   Khorasani,   S.   N., Neisiany,  R.  E.,  &  Ramakrishna,  S.  (2019). Wound  dressings:  Current  advances  and future  directions. Journal  of  Applied  Poly-mer Science, 136(27). https://doi.org/10.1002/app.47738
  17. Goswami, R., Singh, S., Narasimhappa, P., Rama-murthy,  P.  C.,  Mishra,  A.,  Mishra,  P.  K., Joshi,  H.  C.,  Pant,  G.,  Singh,  J.,  Kumar,  G., Khan, N. A., & Yousefi, M. (2024). Nanocel-lulose:  A  comprehensive  review  investi-gating its potential as an innovative mate-rial  for  water  remediation. International Journal    of    Biological    Macromolecules, 254(Part 3), 127465. https://doi.org/10.1016/j.ijbi-omac.2023.127465
  18. Hao,  Q.,  Schossig,  J.,  Davide,  T.,  Towolawi,  A., Zhang,  C.,  &  Lu,  P.  (2024).  Gravity-Driven Ultrahigh-Speed  Electrospinning  for  the Production  of  Ethyl  Cellulose  Fibers  with Tunable  Porosity  for  Oil  Absorption. ACS Sustainable    Chemistry    &    Engineering, 13(1), 507–517. https://doi.org/10.1021/acssuschemeng.4c08259
  19. Hsieh, Y. (2018). Cellulose Nanofibers: Electro-spinning and Nanocellulose Self‑Assem‑blies. Advanced  Green  Composites,  67–95. https://doi.org/10.1002/9781119323327.ch4
  20. Izadi, M., & Latifi, E. (2022). Comparison of the antibacterial  properties  of  phycocyanin and its SNPs and their effects on rat blood cells  and  liver  enzymes. Beni-Suef  Univer-sity  Journal  of  Basic  and  Applied  Sciences, 11(1). https://doi.org/10.1186/s43088-022-00236-w
  21. Ji, X., Guo, J., Guan, F., Liu, Y., Yang, Q., Zhang, X., &  Xu,  Y.  (2021).  Preparation  of  electro-spun     polyvinyl     Alcohol/Nanocellulose composite  film  and  evaluation  of  its  bio-medical   performance. Gels, 7(4),   223. https://doi.org/10.3390/gels7040223
  22. Jodnok, S., Choeisai, P., Kruehong, C., & Choeisai, K.  (2021b).  Recycling  disposable  bamboo chopstick waste as a renewable energy re-source:  Case  study  in  Khon  Kaen  Univer-sity,   Thailand. Sustainable   Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00101-y
  23. Kargarzadeh,  H.,  Huang,  J.,  Lin,  N.,  Ahmad,  I., Mariano,  M.,  Dufresne,  A.,  Thomas,  S.,  & Gałęski, A. (2018). Recent developments in     nanocellulose-based     biodegradable polymers,   thermoplastic   polymers,   and porous nanocomposites. Progress in Poly-mer Science, 87,197–227. https://doi.org/10.1016/j.progpolym-sci.2018.07.008
  24. Kaya, S., & Derman, S. (2023). İDEAL YARA ÖRTÜSÜNÜN ÖZELLİKLERİ. Ankara  Uni-versitesi  Eczacilik  Fakultesi  Dergisi, 47(3), 5. https://doi.org/10.33483/jfpau.1253376Khandual, S., Sanchez, E. O. L., Andrews, H. E., & De  La  Rosa,  J.  D.  P.  (2021).  Phycocyanin content  and  nutritional  profile  of  Arthro-spira  platensis  from  Mexico:  efficient  ex-traction  process  and  stability  evaluation of   phycocyanin. BMC   Chemistry,   15(1). https://doi.org/10.1186/s13065-021-00746-1de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER3838Volume 6| Number 8| August| 2025
  25. Khodayari,  A.,  Vats,  S.,  Mertz,  G.,  Schnell,  C.  N., Fuentes  Rojas,  C.,  &  Seveno,  D.  (2025). Electrospinning of cellulose nanocrystals: Procedure    and    optimization. Carbohy-drate Polymers, 347, 122698. https://doi.org/10.1016/j.car-bpol.2024.122698
  26. Kumar,  P.,  Miller,  K.,  Kermanshahi-Pour,  A., Brar, S. K., Beims,  R. F.,  & Xu, C. C. (2022). Nanocrystalline   cellulose   derived   from spruce wood: Influence of process param-eters. International  Journal  of  Biological Macromolecules, 221, 426–434. https://doi.org/10.1016/j.ijbi-omac.2022.09.017
  27. Leong, M., Kong, Y., Harun, M., Looi, C., & Wong, W. (2023). Current advances of nanocellu-lose application in biomedical field. Carbo-hydrate Research, 532, 108899. https://doi.org/10.1016/j.carres.2023.108899
  28. Luo, C. (2013). China’s 80 billion disposable chopsticks   a   burden   on   forests.   Hong Kong: South China Morning Post. https://www.scmp.com/news/china/ar-ticle/1188299/chinas-80-billion-dispos-able-chopsticks-burden-forests
  29. Meng, Z., Liu, J., Zhang, R., Ren, Y., Qi, Q., Cui, B., Gou, Y., Zhuang, S., Zhao, T., Liu, Q., Bao, X., & Ren, C. (2025). Phycocyanin-based mul-tifunctional   hydrogel   with   self-healing, hemostatic,  antioxidative,  and  antibacte-rial  activity  for  wound  healing. Interna-tional   Journal   of  Biological   Macromole-cules, 310(Part 2), 143254. https://doi.org/10.1016/j.ijbi-omac.2025.143254
  30. Moon,  R.J.,  Schueneman,  G.T.  &  Simonsen,  J. Overview    of    Cellulose    Nanomaterials, Their  Capabilities  and  Applications. JOM 68, 2383–2394 (2016). https://doi.org/10.1007/s11837-016-2018-7
  31. Mouro,  C.,  &  Gouveia,  I.  C.  (2023).  Electrospun wound  dressings  with  antibacterial  func-tion: a critical review of plant extract and essential   oil   incorporation. Critical   Re-views  in  Biotechnology,  44(4),  641–659. https://doi.org/10.1080/07388551.2023.2193859
  32. Muraleedharan,  M.  N.,  Karnaouri,  A.,  Piatkova, M.,  Ruiz-Caldas,  M.,  Matsakas,  L.,  Liu,  B., Rova, U., Christakopoulos, P., & Mathew, A. P.  (2021).  Isolation  and  modification  of nano-scale    cellulose    from    organosolv-treated  birch  through  the  synergistic  ac-tivity of LPMO and endoglucanases. Inter-national  Journal  of  Biological  Macromole-cules, 183, 101–109. https://doi.org/10.1016/j.ijbi-omac.2021.04.136
  33. Mutlu, B., Çaylak, S., & Duman, Ş. (2022). Incor-poration  of  cerium  oxide  into  hydroxyap-atite/chitosan composite scaffolds for bone repair. https://doiserbia.nb.rs/Arti-cle.aspx?ID=1820-61312203207M
  34. Mutlu, G.,  Calamak,  S., Ulubayram, K., & Guven, E.  (2017).  Curcumin-loaded  electrospun PHBV   nanofibers   as   potential   wound-dressing material. Journal of Drug Delivery Science   and   Technology, 43,   185–193. https://doi.org/10.1016/j.jddst.2017.09.017
  35. Patil, T. V., Patel, D. K., Dutta, S. D., Ganguly, K., Santra,  T.  S.,  &  Lim,  K. (2021).  Nanocellu-lose, a versatile platform: From the deliv-ery of active molecules to tissue engineer-ing   applications. Bioactive   Materials,   9, 566–589. https://doi.org/10.1016/j.bio-actmat.2021.07.006
  36. Pellegrino,  P.,  Bramanti,  A.  P.,  Farella,  I.,  Cas-cione,  M.,  De  Matteis,  V.,  Della  Torre,  A., Quaranta,  F.,  &  Rinaldi,  R.  (2022).  Pulse-Atomic   Force   Lithography:   a   powerful nanofabrication   technique   to   fabricate constant  and  Varying-Depth  nanostruc-tures. Nanomaterials, 12(6), 991. https://doi.org/10.3390/nano12060991
  37. Raju, V., Revathiswaran, R., Subramanian, K. S., Parthiban, K. T., Chandrakumar, K., Anoop, E. V., & Chirayil, C. J. (2023). Isolation and characterization of nanocellulose from se-lected  hardwoods,  viz.,  Eucalyptus  tereti-cornis  Sm.  and  Casuarina  equisetifolia  L., by  steam  explosion  method. Scientific  Re-ports, 13(1). https://doi.org/10.1038/s41598-022-26600-5
  38. Refate,  A.,  Mohamed,  Y.,  Mohamed,  M.,  Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Ba-de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER 3839Volume 6| Number 8| August | 2025
  39. tikh,  H.,  El-Kashif,  E.,  El-Khatib,  S.,  &  Me-hanny, S. (2023). Influence of electrospin-ning  parameters  on  biopolymers  nano-fibers,  with  emphasis  on  cellulose  &  chi-tosan. Heliyon, 9(6), e17051. https://doi.org/10.1016/j.heli-yon.2023.e17051
  40. Resch,  A.,  Staud,  C.,  &  Radtke,  C.  (2021).  Nano-cellulose‑based wound dressing for con‑servative wound management in children with second‑degree burns. International Wound Journal, 18(4), 478–486. https://doi.org/10.1111/iwj.13548
  41. Ribeiro,   A.   S.,   Costa,   S.   M.,   Ferreira,   D.   P., Calhelha, R. C., Barros, L., Stojković, D., Soković, M., Ferreira, I. C., & Fangueiro, R. (2021).   Chitosan/nanocellulose   electro-spun  fibers  with  enhanced  antibacterial and antifungal activity for wound dressing applications. Reactive  and  Functional  Pol-ymers/Reactive   &   Functional   Polymers, 159, 104808. https://doi.org/10.1016/j.reactfunct-polym.2020.104808
  42. Safari, R., Amiri, Z. R., & Kenari, R. E. (2020). An-tioxidant and antibacterial activities of  C-phycocyanin  from  common  name  Spir-ulina platensis. Iranian Journal of Fisheries and Sciences, 19(4), 1911–1927. https://doi.org/10.22092/ijfs.2019.118129
  43. Shankaran, D. R. (2018). Cellulose nanocrystals for  health  care  applications.  In Elsevier eBooks (pp. 415–459). https://doi.org/10.1016/b978-0-08-101971-9.00015-6
  44. Shanmugam,  A.,  Sigamani,  S.,  Venkatachalam, H.,    Jayaraman,    J.,    &    Ramamurthy,    D. (2017). Antibacterial activity of extracted phycocyanin  from  Oscillatoria  sp. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2017.70310
  45. Sihag,  S.  S.,  Pal,  J.,  &  Yadav,  M.  (2022).  Extrac-tion  and  Characterization  of  Nanocellu-lose  from  Wheat  Straw:  Facile  Approach. Journal of Water and Environmental Nano-technology, 7(3), 317-331. https://doi.org/10.22090/jwent.2022.03.007
  46. Singh, H., Verma, A. K., Trivedi, A. K., & Gupta, M. (2023). Characterization of nanocellulose isolated  from  bamboo  fibers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.300
  47. Singh, Y. P., Dasgupta, S., Nayar, S., & Bhaskar, R. (2020).  Optimization  of  electrospinning process  &  parameters  for  producing  de-fect-free     chitosan/polyethylene     oxide nanofibers  for  bone  tissue  engineering. Journal  of  Biomaterials  Science, Polymer Edition, 31(6), 781–803. https://doi.org/10.1080/09205063.2020.1718824
  48. Suzuki,  A.,  Sasaki, C.,  Asada, C.,  & Nakamura, Y. (2018). Production of cellulose nanofibers from  Aspen  and  Bode  chopsticks  using  a high    temperature    and    high    pressure steam  treatment  combined  with  milling. Carbohydrate   Polymers, 194,   303–310. https://doi.org/10.1016/j.car-bpol.2018.04.047
  49. Tamo,  A.  K.  (2024).  Nanocellulose-Based  Hy-drogels  as  Versatile  Bio-Based  Materials with Interesting Functional Properties for Tissue  Engineering  Applications. Journal of  Materials  Chemistry  B, 12(32),  7692–7759. https://doi.org/10.1039/d4tb00397g
  50. The Economist. (2014, September 13). Sticks in the gullet. The Economist. https://www.econo-mist.com/china/2014/09/13/sticks-in-the-gullet
  51. Tripatanasuwan, S., Zhong, Z., & Reneker, D.  H. (2007). Effect of evaporation  and solidifi-cation  of  the  charged  jet  in  electrospin-ning  of  poly(ethylene  oxide)  aqueous  so-lution. Polymer,     48(19),     5742–5746. https://doi.org/10.1016/j.poly-mer.2007.07.045
  52. Trushina,  D.  B.,  Borodina,  T.  N.,  Belyakov,  S.,  & Antipina, M. N. (2022). Calcium carbonate vaterite  particles  for  drug  delivery:  Ad-vances  and  challenges. Materials  Today Advances, 14, 100214. https://doi.org/10.1016/j.mtadv.2022.100214de Dioset al., 2025 /Nanocellulose and Phycocyanin as Viable Additives for ElectrospunFibersIJMABER3840Volume 6| Number 8| August| 2025
  53. Usov, I., Nyström, G., Adamcik, J., Handschin, S., Schütz,  C.,  Fall,  A.,  Bergström,  L.,  &  Mez-zenga, R. (2015). Understanding  nanocel-lulose  chirality  and  structure–properties relationship  at  the  single  fibril  level. Na-ture Communications, 6(1). https://doi.org/10.1038/ncomms8564
  54. Vergel De Dios, T. P., Luares, M. A., Arboleda, W., Calibara,  M.  D.  C.,  &  Estrellado,  J.  R.  C. (2025).  Multi-Objective  Taguchi  Optimi-zation  of  Electrospinning  Parameters  for the    Development    of    Poly-(vinyl    alco-hol)/Waste   Wooden   Utensil   Nanocellu-lose/Phycocyanin  Electrospun  Fibers. In-ternational   Journal   of   Multidisciplinary: Applied  Business  and  Education  Research, 6(6), 3045-3069. https://doi.org/10.11594/ijma-ber.06.06.31
  55. Wang,  D.,  Cheng,  W.,  Yue,  Y.,  Xuan,  L.,  Ni,  X.,  & Han,   G.   (2018).   Electrospun   Cellulose Nanocrystals/Chitosan/Polyvinyl  Alcohol Nanofibrous  Films  and  their  Exploration to    Metal    Ions    Adsorption. Polymers, 10(10), 1046. https://doi.org/10.3390/polym10101046
  56. Wcw-Admin-Support. (2023, April 28). Types of wound  dressings  and  when  to  use  them. West     Coast     Wound     &     Skin Care. https://westcoastwound.com/types-of-wound-dressings-and-when-to-use-them/
  57. Yang, G.-Z., Li, H.-P., Yang, J.-H., Wan, J., & Yu, D.-G.  (2017).  Influence  of  working  tempera-ture on the formation of electrospun poly-mer  nanofibers. Nanoscale  Research  Let-ters, 12(1), 55. https://doi.org/10.1186/s11671-016-1824-8
  58. Zahra,  F.  T.,  Zhang,  Y.,  Ajayi,  A.  O.,  Quick,  Q.,  & Mu,  R.  (2024).  Optimization  of  electro-spinning  parameters  for  lower  molecular weight  polymers:  A  case  study  on  polyvi-nylpyrrolidone. Polymers,   16(9),   1217. https://doi.org/10.3390/polym16091217
  59. Zaman, H. U., Islam, J., Khan, M. A., & Khan, R. A. (2011).  Physico-mechanical  properties  of wound dressing material and its biomedi-cal  application. Journal  of  the  Mechanical Behavior  of  Biomedical  Materials/Journal of  Mechanical  Behavior  of  Biomedical  Ma-terials, 4(7), 1369–1375. https://doi.org/10.1016/j.jmbbm.2011.05.007
  60. Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C., & Deng,  Y.  (2013).  Extraction  of  cellulose nanofibrils  from  dry  softwood  pulp  using high shear homogenization. Carbohydrate Polymers, 97(2), 695–702. https://doi.org/10.1016/j.car-bpol.2013.05.050
  61. Zhou, R., Ma, Y., Yang, M., Cheng, Y., Ma, X., Li, B., Zhang,  Y.,  Cui,  X.,  Liu,  M.,  Long,  Y.,  &  Li,  C. (2025).  Wound  dressings  using  electro-spun   nanofibers:   mechanisms,   applica-tions, and future directions. European Pol-ymer Journal,113900. https://doi.org/10.1016/j.eur-polymj.2025.113900