HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 8 (2025)

The Potential of Portable AR in Physics Education: A Study on Student Perceptions

Charlie T. Anselmo | Artemio B. Saet | Angelica P. Magleleong | Apol Joy D. Cagayan | Fely T. Corpuz

Discipline: Education

 

Abstract:

Integrating portable augmented reality (AR) into physics education has the potential to enhance student engagement and learning outcomes. This study investigates students' perceptions of the appeal and effective-ness of the Traveling Virtual Lab (TVL), a solar-powered AR learning kit designed to improve physics education in the Philippines. A quantitative research design was employed, utilizing the "Student Acceptance of Vir-tual Laboratory questionnaire" adapted from Park (2009). The sample consisted of 58 students, with a balanced gender distribution and a ma-jority at the tertiary-education level. Descriptive and inferential statisti-cal analyses were performed to address the research questions. The re-sults indicate that students perceive TVL as appealing and effective for learning physics concepts, with mean ratings of 3.9 for both variables. No significant differences were found in perceptions based on gender or grade. This study highlights the potential of portable AR to enhance phys-ics education by providing immersive and interactive experiences that can visualize complex concepts and overcome resource constraints. However, challenges remain, including technological accessibility and the need for training teachers. These findings contribute to the growing body of literature on AR in education and have implications for the de-velopment and implementation of virtual laboratory technologies, par-ticularly in resource-constrained settings. Future research should focus on addressing implementation challenges and exploring the long-term impact on student learning outcomes.



References:

  1. Algerafi,  M.  A.  M.,  Oubibi,  M.,  Wijaya,  T.  T.,  & Zhou, Y. (2023). Unlocking the Potential: A Comprehensive Evaluation of  Augmented Reality  and  Virtual  Reality  in  Education. Electronics, 12(18), 3953. https://doi.org/10.3390/electron-ics12183953
  2. Aljuhani,   K.,   Meccawy,   M.,   Althabiti,   M.,   & Sonbul,  M.  (2018).  Creating  a  Virtual  Sci-ence  Lab  (VSL):  the  adoption  of  virtual labs  in  Saudi  schools. Smart  Learning  En-vironments, 5(1). https://doi.org/10.1186/s40561-018-0067-9
  3. Alhashem, F., & Alfailakawi, A. (2023). Technol-ogy-enhanced learning through virtual la-boratories  in  chemistry  education. Con-temporary Educational Technology, 15(4), ep474. https://doi.org/10.30935/cedtech/13739
  4. Anselmo,  C.,  Aquino,  J.  L.,  Dumelod,  D.,  Abe,  L., Ingente, M. A., Dimaano, V., ... Anselmo, M. C. (2024). Evaluating the Impact of AR-En-hanced  Virtual  Traveling  Labs  on  Physics Teaching  and  Learning.Journal  of  Inter-disciplinary   Perspectives,3(1),   266–273. https://doi.org/10.69569/jip.2024.0631
  5. Asiksoy, G. (2023). Effects of Virtual Lab Expe-riences  on  Students’  Achievement  and Perceptions  of  Learning  Physics. Interna-tional Journal of Online and Biomedical En-gineering (IJOE), 19(11). https://doi.org/10.3991/ijoe.v19i11.39049
  6. Badilla-Quintana,  M.  G.,  Salazar  Arias,  M.,  & Sepulveda-Valenzuela,   E.   (2020).   Aug-mented  Reality  as  a  Sustainable  Technol-ogy to Improve Academic Achievement in Students with and without Special Educa-tional Needs. Sustainability, 12(19), 8116. https://doi.org/10.3390/su12198116
  7. Bajaj,  A.  (2023).  Impact  of  Virtual  Reality  (Vr) and Augmented Reality (Ar) in Education. Tuijin Jishu/Journal of Propulsion Technol-ogy, 44(4), 1310–1318. https://doi.org/10.52783/tjjpt.v44.i4.1014
  8. Bangga-Modesto, D. (2024). Examining Student Perception  on  Mobile  Augmented  Reality Integration, Gender Differences, Learning Styles,  Feedback,  Challenges,  and  Oppor-tunities in an Online Physics Class. Science Education    International, 35(1),    2–12. https://doi.org/10.33828/sei.v35.i1.1
  9. Bernardo,  A.  B.  I.,  Cordel,  M.  O.,  Calleja,  M.  O., Teves,  J.  M.  M.,  Yap,  S.  A.,  &  Chua,  U.  C. (2023).  Profiling  low-proficiency  science students in the Philippines using machine learning. Humanities   &   Social   Sciences Communications, 10(1). https://doi.org/10.1057/s41599-023-01705-y
  10. Canright, J. P., & White Brahmia, S. (2024). Mod-eling  novel  physics  in  virtual  reality  labs: An  affective  analysis  of  student  learning. Physical   Review   Physics   Education   Re-search, 20(1). https://doi.org/10.1103/physrevphyseducres.20.010146
  11. Chandir,  H.  (2020).  Student  responses  on  the survey of global competence in PISA 2018. Discourse: Studies in the Cultural Politics of Education, ahead-of-print(ahead-of-print), 526–542. https://doi.org/10.1080/01596306.2020.1844153
  12. Crogman,  H.  T.,  Sonawane,  R.  B.,  Boroon,  R., Pacheco,  E.,  &  Cano,  V.  D.  (2025).  Virtual Reality,   Augmented   Reality,   and   Mixed Reality  in  Experiential  Learning:  Trans-forming  Educational  Paradigms. Educa-tion Sciences, 15(3), 303. https://doi.org/10.3390/educsci15030303
  13. Deng, W., Wang, L., & Deng, X. (2024). Exploring Interactive Learning Environments Based on  Augmented  Reality  Technology. Inter-national    Journal    of    Interactive    Mobile Technologies (IJIM), 18(12), 15–29. https://doi.org/10.3991/ijim.v18i12.49911
  14. Fadda,  D.,  Salis,  C.,  &  Vivanet,  G.  (2022).  About the Efficacy of Virtual and Remote Labor-atories  in  STEM  Education  in  Secondary School:  A  Second-Order  Systematic  Re-view. Journal  of  Educational,  Cultural  and Anselmoet al., 2025 /The Potential of Portable AR in Physics EducationIJMABER 3913Volume 6| Number 8| August | 2025Psychological  Studies  (ECPS  Journal), 26. https://doi.org/10.7358/ecps-2022-026-fadd
  15. Goff, E. E., Irvin, M. J., Mulvey, K. L., & Hartstone-Rose,   A.   (2018).   Applications   of   Aug-mented Reality in Informal Science Learn-ing Sites: a Review. Journal of Science Edu-cation  and  Technology, 27(5),  433–447. https://doi.org/10.1007/s10956-018-9734-4
  16. Hassan, J., Devi, A., & Ray, B. (2022). Virtual La-boratories   in   Tertiary   Education:   Case Study Analysis by Learning Theories. Edu-cation Sciences, 12(8), 554. https://doi.org/10.3390/educsci12080554
  17. Iqbal,  A.  I.,  Aamir,  A.,  Hammad,  A.,  Hafsa,  H., Basit,  A.,  Oduoye,  M.  O.,  Anis,  M.  W.,  Ah-med, S., Younus, M. I., & Jabeen, S. (2024). Immersive   Technologies   in   Healthcare: An In-Depth Exploration of Virtual Reality and  Augmented  Reality  in  Enhancing  Pa-tient  Care,  Medical  Education,  and  Train-ing  Paradigms. Journal  of  Primary  Care  & Community Health, 15. https://doi.org/10.1177/21501319241293311
  18. Jiang,  H.,  Zhu,  D.,  Chugh,  R.,  Turnbull,  D.,  &  Jin, W.  (2025).  Virtual  reality  and  augmented reality-supported   K-12   STEM   learning: trends,  advantages,  and  challenges. Edu-cation    and    Information    Technologies, 30(9), 12827–12863. https://doi.org/10.1007/s10639-024-13210-z
  19. Jiang, S., Sung, S. H., Xie, C., Tatar, C., & Huang, X. (2021). Augmented Reality in Science La-boratories: Investigating High School Stu-dents’ Navigation Patterns and Their Ef‐fects on Learning Performance. Journal of Educational  Computing  Research, 60(3), 777–803. https://doi.org/10.1177/07356331211038764
  20. Lai,  J.  W.,  &  Cheong,  K.  H.  (2022).  Educational Opportunities   and   Challenges   in   Aug-mented  Reality:  Featuring  Implementa-tions  in  Physics  Education. IEEE  Access, 10, 43143–43158. https://doi.org/10.1109/ac-cess.2022.3166478
  21. Lauer, L., Altmeyer, K., Javaheri, H., Grünerbl, A., Brünken,   R.,   Lukowicz,   P.,   Malone,   S., Amiraslanov,  O.,  &  Peschel,   M.  (2020). Real-time visualization of electrical circuit schematics: An augmented reality experi-ment   setup   to   foster   representational knowledge in introductory physics educa-tion. The Physics Teacher, 58(7), 518–519. https://doi.org/10.1119/10.0002078
  22. Lee,  H.-Y.,  Wu,  T.-T.,  Wang,  W.-S.,  Huang,  Y.-M., &  Lin,  C.-J.  (2023).  Integrating  Computa-tional Thinking into Scaffolding Learning: An  Innovative  Approach  to  Enhance  Sci-ence, Technology, Engineering, and Math-ematics Hands-On Learning. Journal of Ed-ucational    Computing    Research, 62(2), 211–247. https://doi.org/10.1177/07356331231211916
  23. Jiang,  H.,  Zhu,  D.,  Chugh,  R.,  Turnbull,  D.,  &  Jin, W.  (2025).  Virtual  reality  and  augmented reality-supported   K-12   STEM   learning: trends,  advantages,  and  challenges. Edu-cation    and    Information    Technologies, 30(9), 12827–12863. https://doi.org/10.1007/s10639-024-13210-z
  24. Maas, M. J., & Hughes, J. M. (2020). Virtual, aug-mented, and mixed reality in K–12 educa-tion:  a  review  of  the  literature. Technol-ogy, Pedagogy and Education, 29(2), 231–249. https://doi.org/10.1080/1475939x.2020.1737210
  25. Marín  Rodriguez,  W.  J.,  Calvo  Rivera,  I.  P.,  An-drade  Girón,  D.  C.,  Susanibar  Ramirez,  E. T., Caro Soto, F. G., Ausejo Sanchez, J. L., & Zúñiga Rojas, Z.  R. (2023). Artificial Intel-ligence  and  Augmented  Reality  in  Higher Education:  a  systematic review. Data  and Metadata, 2, 121. https://doi.org/10.56294/dm2023121
  26. Mohammadi,   K.,   Fadlallah,   J.,   Bonakala,   S., Ayeche,  L.,  Bentria,  E.  T.,  Medina,  J.,  &  El Mellouhi, F. (2023). MatAR: dynamic aug-mented   reality   platform   for   accessible molecular  visualization. Physical  Chemis-try    Chemical    Physics, 25(43),    29415–29423. https://doi.org/10.1039/d3cp02435kAnselmoet al., 2025 /The Potential of Portable AR in Physics EducationIJMABER3914Volume 6| Number 8| August| 2025
  27. Pande,  P.,  &  Jepsen,  P.  M.  (2024).  Science  lab safety  goes  immersive:  An  ecological  me-dia-comparison  study  with  gender  anal-yses  assessing  iVR’s  learning  effective‐ness. Research and Practice  in Technology Enhanced Learning, 20, 001. https://doi.org/10.58459/rptel.2025.20001
  28. Pandey, A. K., Tyagi, V. V., Salam, P. A., Ahamed, J. U., Said, Z., Juanico, D. E., Tyagi, S. K., Rah-man,  S.,  Krismadinata,  K.,  Samykano,  M., Reji Kumar, R., Sharma, K., & Kalidasan, B. (2022).   Solar   Energy   Utilization   Tech-niques,   Policies,   Potentials,   Progresses, Challenges    and    Recommendations    in ASEAN  Countries. Sustainability, 14(18), 11193. https://doi.org/10.3390/su141811193
  29. Papanastasiou, G., Drigas, A., Skianis, C., Lytras, M.,  &  Papanastasiou,  E.  (2018).  Virtual and  augmented  reality  effects  on  K-12, higher and tertiary education students’ twenty-first century skills. Virtual Reality, 23(4), 425–436. https://doi.org/10.1007/s10055-018-0363-2
  30. Poo,  M.  C.-P.,  Chen,  Q.,  &  Lau,  Y.-Y.  (2023).  Are Virtual  Laboratories  and  Remote  Labora-tories  Enhancing  the  Quality  of  Sustaina-bility     Education? Education     Sciences, 13(11), 1110. https://doi.org/10.3390/educsci13111110
  31. Radu, I., Schneider, B., & Hv, V. (2021). Unequal Impacts  of  Augmented  Reality  on  Learn-ing  and  Collaboration  During  Robot  Pro-gramming  with  Peers. Proceedings  of  the ACM    on    Human-Computer    Interaction, 4(CSCW3), 1–23. https://doi.org/10.1145/3432944
  32. Reginald,  G.  (2023).  Teaching  and  learning  us-ing  virtual  labs:  Investigating  the  effects on students’ self-regulation. Cogent  Edu-cation, 10(1). https://doi.org/10.1080/2331186x.2023.2172308
  33. Sharma, H., Jaffery, Z. A., & Haque, A. (2018). So-lar energy harvesting wireless sensor net-work nodes: A survey. Journal of Renewa-ble and Sustainable Energy, 10(2), 023704. https://doi.org/10.1063/1.5006619
  34. Sırakaya, M., & Alsancak Sırakaya, D. (2020). Augmented  reality  in  STEM  education:  a systematic   review. Interactive   Learning Environments, 30(8), 1556–1569. https://doi.org/10.1080/10494820.2020.1722713
  35. Srinivasa,  A.  R.,  Jha,  R.,  Ozkan,  T.,  &  Wang,  Z. (2020).  Virtual  reality  and  its  role  in  im-proving  student  knowledge,  self-efficacy, and attitude in the materials testing labor-atory. International  Journal  of  Mechanical Engineering  Education, 49(4),  382–409. https://doi.org/10.1177/0306419019898824
  36. Tuli,  N.,  Sharma,  S.,  &  Mantri,  A.  (2022).  Aug-mented  reality  in  education:  a  systematic study on technical and usability issues. In-ternational Journal of Computer Aided En-gineering   and   Technology, 17(2),   164. https://doi.org/10.1504/ijcaet.2022.125048
  37. Ugwoke,  B.,  Corgnati,  S.  P.,  Adeleke,  A.,  Pearce, J. M., & Leone, P. (2020). Decentralized Re-newable    Hybrid    Mini-Grids    for    Rural Communities:   Culmination   of   the   IREP Framework  and  Scale  up  to  Urban  Com-munities. Sustainability, 12(18),    7411. https://doi.org/10.3390/su12187411
  38. Vidak, A., Movre Šapić, I., Mešić, V., & Gomzi, V. (2024).  Augmented  reality  technology  in teaching  about  physics:  a  systematic  re-view  of  opportunities  and  challenges. Eu-ropean  Journal  of  Physics, 45(2),  023002. https://doi.org/10.1088/1361-6404/ad0e84
  39. Volioti,  C.,  Sotiriou,  C.,  Spiridis,  V.,  Sapounidis, T.,   Melisidis,   K.,   Zafeiropoulou,   M.,   & Keramopoulos,   E.   (2022).   Using   Aug-mented  Reality  in K-12  Education:  An  In-dicative Platform for Teaching Physics. In-formation, 13(7), 336. https://doi.org/10.3390/info13070336
  40. Wibowo, F. C. (2023). Effects of Augmented Re-ality Integration (ARI) based Model Phys-ics Independent Learning (MPIL) for facil-itating 21st-century skills (21-CS). Journal of    Technology    and    Science    Education, 13(1), 178. https://doi.org/10.3926/jotse.1800 Anselmoet al., 2025 /The Potential of Portable AR in Physics EducationIJMABER 3915Volume 6| Number 8| August | 2025
  41. Zatarain‐Cabada,  R.,  Cárdenas‐Sainz,  B.  A., Chavez‐Echeagaray, M. E., & Barrón‐Es‐trada, M. L. (2022). Experiences of web‐based  extended  reality  technologies  for physics  education. Computer  Applications in  Engineering  Education, 31(1),  63–82. https://doi.org/10.1002/cae.22571
  42. Zhang,  N.,  &  Liu,  Y.  (2024).  Design  and  imple-mentation    of    virtual    laboratories    for higher   education   sustainability:   a   case study  of  Nankai  University. Frontiers  in Education, 8. https://doi.org/10.3389/feduc.2023.1322263