HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 8 (2025)

Barrier Property, Antimicrobial Susceptibility, and Biodegradability of Waste Cassava Peel Starch/Waste Shrimp Shell Chitosan/Sorbitol Bioplastic Films

Bianca Isabel Molina | Joachim Florenzo Dejuras | Andre E Picar | Maria Julliana Veran | John Ray C. Estrellado

Discipline: agriculture, food and related studies

 

Abstract:

Barrier properties, antimicrobial susceptibility potential, and biodeg-radability of bioplastics are critical indicators of bioplastic viability in industrial use, especially when raw materials to the production were sourced from food waste, such as waste cassava peel starch and shrimp shell chitosan. This study aims to investigate these properties from the created bioplastic film primarily consisting of cassava peel starch (CPS) and shrimp shell chitosan (SSCHT), with sorbitol (SOR) as a plasticizer, utilizing green methods and a constrained D-optimal mixture design. Films were assessed via water uptake, water vapor transmission rate, morphology, antimicrobial susceptibility, and biodegradability. Models were generated in terms of water uptake (p = 0.0684) and water vapor transmission rate (p = 0.0013) and ranged between 88.49% to 326.35% and 435.67 to 559.09 g/m²/24h respectively. CPS (p = 0.0008) had a significant effect on water uptake levels due to its hy-droxyl groups, which form hydrogen bonds that retain water. On the other hand, water vapor transmission rate was significantly affected by CPS (p = 0.0001) and SOR (p = 0.0001). Although SSCHT (p = 0.0787) was statistically insignificant its acetyl group reduced the hydrophilic nature of CPS. CPS and SOR were found to positively affect weight loss through biodegradation due to increased hydrophilicity and microbial colonization. Scanning electron microscopy (SEM) at 300x magnifica-tion revealed visibly smooth morphology of films, while at 1500x and 6500x magnification the films had visible crevices possibly due to greater SSCHT concentrations lower WVTR, and higher CPS concentra-tions raising water absorption levels. Antimicrobial susceptibility tests showed that increased SSCHT led to more effective inhibition against E. coli and P. aeruginosa. This study provides insight into the possibili-ties of bioplastic films created from valorized food waste and used for packaging applications and these findings suggest the viability of waste-derived bioplastics in packaging applications that demand water resistance and antimicrobial activity.



References:

  1. Abdullah, A. D., Fikriyyah, A. K., & Furghoniyyah,  U.  (2020).  Effect  of  chitin addition on water resistance properties of starch-based   bioplastic   properties.   IOP Conference   Series:   Earth   and   Environ-mental Science, 483(1), 012002. https://doi.org/10.1088/1755-1315/483/1/012002
  2. Agustin,  Y.  E.,  &  Padmawijaya,  K.  S.  (2017).  Ef-fect of glycerol and zinc oxide addition on Molinaet al., 2025 /Barrier Properties, Antimicrobial Susceptibility, and Biodegradability of CPS/SSCHT/SOR Bioplastic FilmsIJMABER3950Volume 6| Number 8| August|2025antibacterial  activity  of  biodegradable bi-oplastics   from   chitosan-kepok   banana peel starch. IOP Conference Series Materi-als Science and Engineering, 223, 012046. https://doi.org/10.1088/1757-899x/223/1/012046
  3. Ahmed, H., Noyon, M. A. R., Uddin, Md. E., Rafid, M.  M.,  Hosen,  M.  S.,  &  Layek,  R.  K.  (2025). Development and Characterization of Chi-tosan-Based  Antimicrobial  Films:  A  Sus-tainable  Alternative  to  Plastic  Packaging. Cleaner Chemical Engineering, 11, 100157. https://www.sciencedi-rect.com/science/arti-cle/pii/S2772782325000129?via%3Di-hub
  4. Aranaz,  I.,  Alcántara,  A.  R.,  Civera,  M.  C.,  Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N.  (2021).  Chitosan:  An  Overview  of  Its Properties   and   Applications.   Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
  5. Arief,  M.  D.,  Mubarak,  A.  S.,  &  Pujiastuti,  D.  Y. (2021,  February).  The  concentration  of sorbitol on bioplastic cellulose based car-rageenan  waste  on  biodegradability  and mechanical   properties   bioplastic.   Earth and Environmental Science 679(1), 012013. https://doi.org/10.1088/1755-1315/679/1/012013
  6. Aziz,  I.  A.,  Mohamad,  C.  W.  S.  R.,  &  Adollah,  R. (2019).  Fibre  based  bioplastic  film  from Morus  sp.  (mulberry)  leaves  for  medical purpose.  Journal  of  Physics  Conference Series, 1372(1), 012069. https://doi.org/10.1088/1742-6596/1372/1/012069
  7. Cazón,  P.,  &  Vázquez,  M.  (2019).  Mechanical and  barrier  properties  of  chitosan  com-bined   with   other   components   as   food packaging  film. Environmental Chemistry Letters, 18, 257–267. https://doi.org/10.1007/s10311-019-00936-3
  8. Dasumiati, N., Saridewi, N.,  & Malik, M. (2019). Food packaging development of bioplastic from basic waste of cassava peel (manihot uttilisima)  and  shrimp  shell.  IOP  Confer-ence  Series  Materials  Science  and  Engi-neering, 602(1), 012053. https://doi.org/10.1088/1757-899x/602/1/012053
  9. Dianursanti,  N.,  &  Khalis,  S.  (2018).  The  Effect of  Compatibilizer  Addition  on  Chlorella vulgaris  Microalgae  Utilization  as  a  Mix-ture  for  Bioplastic.  E3S  Web  of  Confer-ences, 67, 03047. https://doi.org/10.1051/e3sconf/20186703047
  10. Folino,  A.,  Karageorgiou,  A.,  Calabrò,  P.  S.,  & Komilis,   D.   (2020).   Biodegradation   of Wasted  Bioplastics  in  Natural  and  Indus-trial  Environments:  A  Review.  Sustaina-bility, 12(15), 6030. https://doi.org/10.3390/su12156030
  11. Ginting,  M.  H.  S.,  Hasibuan,  R.,  Lubis,  M.,  Alan-jani,  F.,  Winoto,  F.  A.,  &   Siregar,  R.   C. (2018).  Supply  of  avocado  starch  (Persea americana mill) as bioplastic material. IOP Conference  Series  Materials  Science  and Engineering, 309, 012098. https://doi.org/10.1088/1757-899x/309/1/012098
  12. Hudzicki, J. (2009). Kirby-Bauer Disk Diffusion Susceptibility    Test    Protocol.    ASM.org. https://asm.org/protocols/kirby-bauer-disk-diffusion-susceptibility-test-pro
  13. Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based    biodegradable    materials: Challenges  and  opportunities.  Advanced Industrial  and  Engineering  Polymer  Re-search, 3(1), 8-18. https://doi.org/10.1016/j.aiepr.2019.11.003
  14. Kowser, Md. A., Mahmud, H., Chowdhury, M. A., Hossain,  N.,  Mim,  J.  J.,  &  Islam,  S.  (2025). Fabrication  and  characterization  of  corn starch  based  bioplastic  for  packaging  ap-plications. Elsevier, 25, 100662. https://doi.org/10.1016/j.rinma.2025.100662
  15. Kusumastuti,  Y.,  Putri,  N.  R.  E.,  Timotius,  D., Syabani, M. W., & Rochmadi, N. (2020). Ef-fect of chitosan addition on the properties of  low-density  polyethylene  blend  as  po-tential bioplastic. Heliyon, 6(11), e05280. https://doi.org/10.1016/j.heli-yon.2020.e05280
  16. Li,  X.,  Gu,  N.,  Huang,  T.  Y.,  Zhong,  F.,  &  Peng,  G. (2023). Pseudomonas aeruginosa:  A typi-cal   biofilm   forming   pathogen   and   an Molinaet al., 2025 /Barrier Properties, Antimicrobial Susceptibility, and Biodegradability of CPS/SSCHT/SOR Bioplastic FilmsIJMABER 3951Volume 6| Number 8| August| 2025emerging but underestimated pathogen in food  processing.  Frontiers  in  Microbiol-ogy, 13. https://doi.org/10.3389/fmicb.2022.1114199
  17. Lusiana, S. W., Putri, D., & Nurazizah, I. Z. (2019, November). Bioplastic properties of sago-PVA   starch   with   glycerol   and   sorbitol plasticizers.   Journal   of   physics:   confer-ence series 1351(1), 012102. https://doi.org/10.1088/1742-6596/1351/1/012102
  18. Oberlintner, A., Bajić, M., Kalčíková, G., Likozar, B.,  &  Novak,  U.  (2021).  Biodegradability study  of  active chitosan  biopolymer  films enriched with Quercus polyphenol extract in   different   soil   types.   Environmental Technology   &   Innovation,   21,   101318. https://doi.org/10.1016/j.eti.2020.101318
  19. Opoku,  M.  K.  (2019).  Preparation  of  Layered Carbon-Based   Nanomaterials   via   Ther-mochemical  Treatment. https://digital.li-brary.txst.edu/server/api/core/bit-streams/e190582d-e65a-44eb-88f6-9b6d2208af9b/content
  20. Payanthoth, N. S.,  Mut, N. N. N., Samanta, P., Li, G., & Jung, J. (2024). A review of biodegra-dation  and  formation  of  biodegradable microplastics in soil and freshwater envi-ronments.  Applied  Biological  Chemistry, 67(1), 110. https://doi.org/10.1186/s13765-024-00959-7
  21. Picar,  A.  E.,  Veran,  M.  J.  T.,  Molina,  B.  I.  &  Deju-ras, J.F., and Estrellado, J. R. C. (2025). Ex-traction,  Development,  and  Validation  of Waste Cassava Peel Starch/Waste Shrimp Shell  Chitosan/Sorbitol  Bioplastic  Films. International Journal of Multidisciplinary: Applied    Business    and    Education    Re-search, 6(6).
  22. Priya,  N.  V.,  Vinitha,  U.  G.,  &  Sundaram,  M.  M. (2021). Preparation of chitosan-based an-timicrobial  active  food  packaging  film  in-corporated with Plectranthus amboinicus essential oil. Biocatalysis and Agricultural Biotechnology, 34, 102021. http://dx.doi.org/10.1016/j.bcab.2021.102021
  23. Savitskaya,  I.  S.,  Kistaubayeva,  A.  S.,  Digel,  I.  E., &   Shokatayeva,   D.   H.   (2017).   Physico-chemical  and  antibacterial  properties  of composite  films  based  on  bacterial  cellu-lose and chitosan for wound dressing ma-terials.   Eurasian   Chemico-Technological Journal, 19(3), 255-264. https://doi.org/10.18321/ectj670
  24. Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M.  N.  (2022).  Mechanical,  thermal,  and barrier properties of starch films incorpo-rated  with  chitosan  nanoparticles.  Nano-technology  Reviews,  11(1),  1464–1477. https://doi.org/10.1515/ntrev-2022-0094
  25. Silveira,  Y.  D.  O.,  Franca,  A.  S.,  &  Oliveira,  L.  S. (2025). Cassava Waste Starch as a Source of   Bioplastics:   Development   of   a   Poly-meric Film with Antimicrobial Properties. Foods, 14(1), 113. https://doi.org/10.3390/foods14010113
  26.   Suryanegara,   L.,   Fatriasari,   W.,   Zulfiana,   D., Anita, S. H., Masruchin, N., Gutari, S., & Ke-mala,  T.  (2021).  Novel  antimicrobial  bio-plastic based on PLA-chitosan by addition of TiO 2 and ZnO. Journal of Environmen-tal  Health  Science  and  Engineering,  19, 415-425. https://doi.org/10.1007/s40201-021-00614-z
  27. Tan, S. X. ,Ong H. C. , Andriyana A., Lim S., Pang Y. L., Kusumo F., & Ngoh G. C. (2022). Char-acterization and Parametric Study on Me-chanical  Properties  Enhancement  in  Bio-degradable   Chitosan-Reinforced   Starch-Based  Bioplastic  Film.  Polymers,  14(2), 278-294. https://doi.org/10.3390/polym14020278
  28. Tanpichai,    S.,    Witayakran,    S.,    Wootthika-nokkhan, J., Srimarut, Y., Woraprayote, W., &  Malila,  Y.  (2020).  Mechanical  and  anti-bacterial properties of the chitosan coated cellulose   paper   for   packaging   applica-tions:  Effects  of  molecular  weight  types and  concentrations  of  chitosan.  Interna-tional journal of biological macromolecules, 155, 1510-151. https://doi.org/10.1016/j.ijbi-omac.2019.11.128Molinaet al., 2025 /Barrier Properties, Antimicrobial Susceptibility, and Biodegradability of CPS/SSCHT/SOR Bioplastic FilmsIJMABER3952Volume 6| Number 8| August|2025
  29. Thuppahige, V. T. W., Moghaddam, L., Welsh, Z. G., Wang, T., & Karim, A. (2023). Investiga-tion   of   critical   properties   of   Cassava (Manihot  esculenta)  peel  and  bagasse  as starch-rich fibrous agro-industrial wastes for  biodegradable  food  packaging.  Food Chemistry, 422, 136200. https://doi.org/10.1016/j.food-chem.2023.136200
  30. Ulyarti, U., Nazarudin, N., Ramadon, R., & Lum-banraja,  P.  (2020,  June).  Cassava  starch edible  film  with  addition  of  gelatin  or modified  cassava  starch.  Earth  and  Envi-ronmental     Science,     515(1),     012030. http://dx.doi.org/10.1088/1755-1315/515/1/012030
  31. Westlake,  J.  R.,  Tran,  M.  W.,  Jiang,  Y.,  Zhang,  X., Burrows,  A.  D.,  &  Xie,  M.  (2022).  Biode-gradable  biopolymers  for  active  packag-ing: demand, development and directions. Sustainable  Food  Technology,  1(1),  50–72. https://doi.org/10.1039/d2fb00004k
  32. Wrońska,  N.,  Katir,  N.,  Nowak-Lange,  M.,  El Kadib,  A.,  &  Lisowska,  K.  (2023).  Biode-gradable chitosan-based films as an alter-native to plastic packaging. Foods, 12(18), 3519. https://doi.org/10.3390/foods12183519
  33. Zhang, Y., Xie, J., Ellis, W. O., Li, J., Appaw, W. O., &  Simpson,  B.  K.  (2024).  Bioplastic  films from  cassava  peels:  Enzymatic  transfor-mation   and   film   properties.   Industrial Crops     and     Products,     213,     118427. https://doi.org/10.1016/j.indcrop.2024.118427