Barrier Property, Antimicrobial Susceptibility, and Biodegradability of Waste Cassava Peel Starch/Waste Shrimp Shell Chitosan/Sorbitol Bioplastic Films
Bianca Isabel Molina | Joachim Florenzo Dejuras | Andre E Picar | Maria Julliana Veran | John Ray C. Estrellado
Discipline: agriculture, food and related studies
Abstract:
Barrier properties, antimicrobial susceptibility potential, and biodeg-radability of bioplastics are critical indicators of bioplastic viability in industrial use, especially when raw materials to the production were sourced from food waste, such as waste cassava peel starch and shrimp shell chitosan. This study aims to investigate these properties from the created bioplastic film primarily consisting of cassava peel starch (CPS) and shrimp shell chitosan (SSCHT), with sorbitol (SOR) as a plasticizer, utilizing green methods and a constrained D-optimal mixture design. Films were assessed via water uptake, water vapor transmission rate, morphology, antimicrobial susceptibility, and biodegradability. Models were generated in terms of water uptake (p = 0.0684) and water vapor transmission rate (p = 0.0013) and ranged between 88.49% to 326.35% and 435.67 to 559.09 g/m²/24h respectively. CPS (p = 0.0008) had a significant effect on water uptake levels due to its hy-droxyl groups, which form hydrogen bonds that retain water. On the other hand, water vapor transmission rate was significantly affected by CPS (p = 0.0001) and SOR (p = 0.0001). Although SSCHT (p = 0.0787) was statistically insignificant its acetyl group reduced the hydrophilic nature of CPS. CPS and SOR were found to positively affect weight loss through biodegradation due to increased hydrophilicity and microbial colonization. Scanning electron microscopy (SEM) at 300x magnifica-tion revealed visibly smooth morphology of films, while at 1500x and 6500x magnification the films had visible crevices possibly due to greater SSCHT concentrations lower WVTR, and higher CPS concentra-tions raising water absorption levels. Antimicrobial susceptibility tests showed that increased SSCHT led to more effective inhibition against E. coli and P. aeruginosa. This study provides insight into the possibili-ties of bioplastic films created from valorized food waste and used for packaging applications and these findings suggest the viability of waste-derived bioplastics in packaging applications that demand water resistance and antimicrobial activity.
References:
- Abdullah, A. D., Fikriyyah, A. K., & Furghoniyyah, U. (2020). Effect of chitin addition on water resistance properties of starch-based bioplastic properties. IOP Conference Series: Earth and Environ-mental Science, 483(1), 012002. https://doi.org/10.1088/1755-1315/483/1/012002
- Agustin, Y. E., & Padmawijaya, K. S. (2017). Ef-fect of glycerol and zinc oxide addition on Molinaet al., 2025 /Barrier Properties, Antimicrobial Susceptibility, and Biodegradability of CPS/SSCHT/SOR Bioplastic FilmsIJMABER3950Volume 6| Number 8| August|2025antibacterial activity of biodegradable bi-oplastics from chitosan-kepok banana peel starch. IOP Conference Series Materi-als Science and Engineering, 223, 012046. https://doi.org/10.1088/1757-899x/223/1/012046
- Ahmed, H., Noyon, M. A. R., Uddin, Md. E., Rafid, M. M., Hosen, M. S., & Layek, R. K. (2025). Development and Characterization of Chi-tosan-Based Antimicrobial Films: A Sus-tainable Alternative to Plastic Packaging. Cleaner Chemical Engineering, 11, 100157. https://www.sciencedi-rect.com/science/arti-cle/pii/S2772782325000129?via%3Di-hub
- Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
- Arief, M. D., Mubarak, A. S., & Pujiastuti, D. Y. (2021, February). The concentration of sorbitol on bioplastic cellulose based car-rageenan waste on biodegradability and mechanical properties bioplastic. Earth and Environmental Science 679(1), 012013. https://doi.org/10.1088/1755-1315/679/1/012013
- Aziz, I. A., Mohamad, C. W. S. R., & Adollah, R. (2019). Fibre based bioplastic film from Morus sp. (mulberry) leaves for medical purpose. Journal of Physics Conference Series, 1372(1), 012069. https://doi.org/10.1088/1742-6596/1372/1/012069
- Cazón, P., & Vázquez, M. (2019). Mechanical and barrier properties of chitosan com-bined with other components as food packaging film. Environmental Chemistry Letters, 18, 257–267. https://doi.org/10.1007/s10311-019-00936-3
- Dasumiati, N., Saridewi, N., & Malik, M. (2019). Food packaging development of bioplastic from basic waste of cassava peel (manihot uttilisima) and shrimp shell. IOP Confer-ence Series Materials Science and Engi-neering, 602(1), 012053. https://doi.org/10.1088/1757-899x/602/1/012053
- Dianursanti, N., & Khalis, S. (2018). The Effect of Compatibilizer Addition on Chlorella vulgaris Microalgae Utilization as a Mix-ture for Bioplastic. E3S Web of Confer-ences, 67, 03047. https://doi.org/10.1051/e3sconf/20186703047
- Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of Wasted Bioplastics in Natural and Indus-trial Environments: A Review. Sustaina-bility, 12(15), 6030. https://doi.org/10.3390/su12156030
- Ginting, M. H. S., Hasibuan, R., Lubis, M., Alan-jani, F., Winoto, F. A., & Siregar, R. C. (2018). Supply of avocado starch (Persea americana mill) as bioplastic material. IOP Conference Series Materials Science and Engineering, 309, 012098. https://doi.org/10.1088/1757-899x/309/1/012098
- Hudzicki, J. (2009). Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. ASM.org. https://asm.org/protocols/kirby-bauer-disk-diffusion-susceptibility-test-pro
- Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Re-search, 3(1), 8-18. https://doi.org/10.1016/j.aiepr.2019.11.003
- Kowser, Md. A., Mahmud, H., Chowdhury, M. A., Hossain, N., Mim, J. J., & Islam, S. (2025). Fabrication and characterization of corn starch based bioplastic for packaging ap-plications. Elsevier, 25, 100662. https://doi.org/10.1016/j.rinma.2025.100662
- Kusumastuti, Y., Putri, N. R. E., Timotius, D., Syabani, M. W., & Rochmadi, N. (2020). Ef-fect of chitosan addition on the properties of low-density polyethylene blend as po-tential bioplastic. Heliyon, 6(11), e05280. https://doi.org/10.1016/j.heli-yon.2020.e05280
- Li, X., Gu, N., Huang, T. Y., Zhong, F., & Peng, G. (2023). Pseudomonas aeruginosa: A typi-cal biofilm forming pathogen and an Molinaet al., 2025 /Barrier Properties, Antimicrobial Susceptibility, and Biodegradability of CPS/SSCHT/SOR Bioplastic FilmsIJMABER 3951Volume 6| Number 8| August| 2025emerging but underestimated pathogen in food processing. Frontiers in Microbiol-ogy, 13. https://doi.org/10.3389/fmicb.2022.1114199
- Lusiana, S. W., Putri, D., & Nurazizah, I. Z. (2019, November). Bioplastic properties of sago-PVA starch with glycerol and sorbitol plasticizers. Journal of physics: confer-ence series 1351(1), 012102. https://doi.org/10.1088/1742-6596/1351/1/012102
- Oberlintner, A., Bajić, M., Kalčíková, G., Likozar, B., & Novak, U. (2021). Biodegradability study of active chitosan biopolymer films enriched with Quercus polyphenol extract in different soil types. Environmental Technology & Innovation, 21, 101318. https://doi.org/10.1016/j.eti.2020.101318
- Opoku, M. K. (2019). Preparation of Layered Carbon-Based Nanomaterials via Ther-mochemical Treatment. https://digital.li-brary.txst.edu/server/api/core/bit-streams/e190582d-e65a-44eb-88f6-9b6d2208af9b/content
- Payanthoth, N. S., Mut, N. N. N., Samanta, P., Li, G., & Jung, J. (2024). A review of biodegra-dation and formation of biodegradable microplastics in soil and freshwater envi-ronments. Applied Biological Chemistry, 67(1), 110. https://doi.org/10.1186/s13765-024-00959-7
- Picar, A. E., Veran, M. J. T., Molina, B. I. & Deju-ras, J.F., and Estrellado, J. R. C. (2025). Ex-traction, Development, and Validation of Waste Cassava Peel Starch/Waste Shrimp Shell Chitosan/Sorbitol Bioplastic Films. International Journal of Multidisciplinary: Applied Business and Education Re-search, 6(6).
- Priya, N. V., Vinitha, U. G., & Sundaram, M. M. (2021). Preparation of chitosan-based an-timicrobial active food packaging film in-corporated with Plectranthus amboinicus essential oil. Biocatalysis and Agricultural Biotechnology, 34, 102021. http://dx.doi.org/10.1016/j.bcab.2021.102021
- Savitskaya, I. S., Kistaubayeva, A. S., Digel, I. E., & Shokatayeva, D. H. (2017). Physico-chemical and antibacterial properties of composite films based on bacterial cellu-lose and chitosan for wound dressing ma-terials. Eurasian Chemico-Technological Journal, 19(3), 255-264. https://doi.org/10.18321/ectj670
- Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films incorpo-rated with chitosan nanoparticles. Nano-technology Reviews, 11(1), 1464–1477. https://doi.org/10.1515/ntrev-2022-0094
- Silveira, Y. D. O., Franca, A. S., & Oliveira, L. S. (2025). Cassava Waste Starch as a Source of Bioplastics: Development of a Poly-meric Film with Antimicrobial Properties. Foods, 14(1), 113. https://doi.org/10.3390/foods14010113
- Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S. H., Masruchin, N., Gutari, S., & Ke-mala, T. (2021). Novel antimicrobial bio-plastic based on PLA-chitosan by addition of TiO 2 and ZnO. Journal of Environmen-tal Health Science and Engineering, 19, 415-425. https://doi.org/10.1007/s40201-021-00614-z
- Tan, S. X. ,Ong H. C. , Andriyana A., Lim S., Pang Y. L., Kusumo F., & Ngoh G. C. (2022). Char-acterization and Parametric Study on Me-chanical Properties Enhancement in Bio-degradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers, 14(2), 278-294. https://doi.org/10.3390/polym14020278
- Tanpichai, S., Witayakran, S., Wootthika-nokkhan, J., Srimarut, Y., Woraprayote, W., & Malila, Y. (2020). Mechanical and anti-bacterial properties of the chitosan coated cellulose paper for packaging applica-tions: Effects of molecular weight types and concentrations of chitosan. Interna-tional journal of biological macromolecules, 155, 1510-151. https://doi.org/10.1016/j.ijbi-omac.2019.11.128Molinaet al., 2025 /Barrier Properties, Antimicrobial Susceptibility, and Biodegradability of CPS/SSCHT/SOR Bioplastic FilmsIJMABER3952Volume 6| Number 8| August|2025
- Thuppahige, V. T. W., Moghaddam, L., Welsh, Z. G., Wang, T., & Karim, A. (2023). Investiga-tion of critical properties of Cassava (Manihot esculenta) peel and bagasse as starch-rich fibrous agro-industrial wastes for biodegradable food packaging. Food Chemistry, 422, 136200. https://doi.org/10.1016/j.food-chem.2023.136200
- Ulyarti, U., Nazarudin, N., Ramadon, R., & Lum-banraja, P. (2020, June). Cassava starch edible film with addition of gelatin or modified cassava starch. Earth and Envi-ronmental Science, 515(1), 012030. http://dx.doi.org/10.1088/1755-1315/515/1/012030
- Westlake, J. R., Tran, M. W., Jiang, Y., Zhang, X., Burrows, A. D., & Xie, M. (2022). Biode-gradable biopolymers for active packag-ing: demand, development and directions. Sustainable Food Technology, 1(1), 50–72. https://doi.org/10.1039/d2fb00004k
- Wrońska, N., Katir, N., Nowak-Lange, M., El Kadib, A., & Lisowska, K. (2023). Biode-gradable chitosan-based films as an alter-native to plastic packaging. Foods, 12(18), 3519. https://doi.org/10.3390/foods12183519
- Zhang, Y., Xie, J., Ellis, W. O., Li, J., Appaw, W. O., & Simpson, B. K. (2024). Bioplastic films from cassava peels: Enzymatic transfor-mation and film properties. Industrial Crops and Products, 213, 118427. https://doi.org/10.1016/j.indcrop.2024.118427