HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 8 (2025)

Simulation and Characterization of Macro-Nutrient Deficiency Symptoms of Abaca (Musa textilis Née var. Inosa) Grown Using Nutrient Film Technique (NFT)

James Francienne J. Rosit | Romel B. Armecin | Marilyn M. Belarmino | Marilou M. Benitez | Lijueraj J. Cuadra

Discipline: agriculture, food and related studies

 

Abstract:

This study was conducted in order to determine the effects of macro-nutrient deficiency to the morpho-physiological and biochemical properties of abaca. Randomized Complete Block Design was used in the study with three nutrient omissions (N, P & K) replicated three times with 12 samples per treatment replicate. This was conducted at the National Abaca Research Center screenhouse, Visayas State Uni-versity, Baybay City, Leyte. Abaca under N and K deficiency produces the shortest plant height, pseudostem length, pseudostem girth, leaf length and leaf width. N deficient plant produces the smallest total leaf area while P deficient plants reduce pseudostem length and leaf width of abaca. However, P deficient plants showed comparable ef-fects to the plant height, pseudostem girth, leaf length and total leaf area of abaca plants with complete nutrients. Furthermore, chloro-phyll a and chlorophyll b content of abaca was lowest under N defi-ciency while control, P and K deficient plants showed comparable re-sults. Free radical scavenging activity was also lowest under N and K deficient plants. Stomatal aperture was lowest under N, P & K defi-cient plants while P deficiency decreases stomatal length. These re-sults suggests that abaca is more sensitive to N and K deficiency as most of the morpho-physiological and biochemical properties of ab-aca was significantly reduced under these conditions.



References:

  1. Aron, D. (1949). Copper enzymes isolated chlo-roplasts,  polyphenoloxidase  in  Beta  vul-garis. Plant Physiology. 24: 1-15.Bolivar,  D.W.  (2006).  Recent  advances  in  chlo-rophyll  biosynthesis.  Photosynth  Res  89, 1–22 (2006). https://doi.org/10.1007/s11120-006-9076-6C
  2. akmak, I. (2005).  The role  of potassium in al-leviating   detrimental   effects   of   abiotic stresses  in  plants.  J.  Plant  Nutr.  Soil  Sci. 2005,   168,   521–530.   [Google   Scholar] [CrossRef]
  3. Carranca,   C.,   Brunetto,   G.,   &   Tagliavini,   M. (2018). Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants. 2018;7:4. doi: 10.3390/plants7010004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen, L.H., Xu, M., Cheng, Z., & Yang, L.T. (2024). Effects of Nitrogen Deficiency on the Pho-tosynthesis,  Chlorophyll  a  Fluorescence, Antioxidant    System,    and    Sulfur    Com-pounds   in   Oryza   sativa.   International Journal   of   Molecular   Sciences,   25(19), 10409. https://doi.org/10.3390/ijms251910409
  5. Cook, J.G.A. (2001). Natural Fibres of Vegetable Origin.   In   Handbook   of   Textile   Fibres; COOK,  J.  G.,  Ed.;  Woodhead  Publishing, 2001; pp 3–78. https://doi.org/10.1533/9781845693152.3.
  6. del Río, L.A. (2015). ROS and RNS in plant phys-iology:  An  overview.  Journal  of  Experi-mental Botany, 66, 2827–2837.
  7. Dizon,  T.O.,  Damasco,  O.P.,  Lobina,  I.T.,  Pinili, M.S., Lalusin, A.G., & Natsuaki, K.T. (2012). (A)(B)Rosit et al., 2025 /Simulation and Characterization of Macro-Nutrient Deficiency Symptoms of Abaca Grown Using NFTIJMABER3984Volume 6| Number 8| August|2025Induction of putative resistant lines of ab-aca (Musa textilis Nee) to Banana bunchy top  virus  and  Banana  bract  mosaic  virus through  in  vitro  mutagenesis.  Journal  In-ternational  Society  for  Southeast  Asian Agricultural  Sciences  (ISSAAS),  18(1):87-99.
  8. dos  Santos  Sarah,  M.M.,  de  Mello  Prado,  R.,  de Souza  Júnior,  J.P.,  Teixeira,  G.C.  M.,  dos Santos  Duarte,  J.C.,  &  de  Medeiros,  R.L.S. (2021).  Silicon  Supplied  via  Root  or  Leaf Relieves  Potassium  Deficiency  Effects  in Common  Bean.  Sci  Rep.  2021;11:19690. doi: 10.1038/s41598-021-99194-z. [DOI] [PMC    free    article]    [PubMed]    [Google Scholar]
  9. Fathi, A., & Zeidali, E. (2021). Conservation till-age  and  nitrogen  fertilizer:  a  review  of corn   growth,   yield   and   weed   manage-ment.  Cent Asian J Plant Sci.  Innov.,  1(3),  121–142. https://www.cajpsi.com/arti-cle_137559_7f1740644996104fe39b1b433015cfb.pdf
  10. Gerardeaux, E., Jordan-Meille, L.,  Constantin, J., Pellerin,    S.,    &    Dingkuhn,    M.    (2010). Changes   in   plant   morphology   and   dry matter  partitioning  caused  by  potassium deficiency  in   Gossypium   hirsutum   (L.). Environ.   Exp.   Bot.   67,   451–459.   doi: 10.1016/j.envexpbot.2009.09.008  Cross-Ref Full Text | Google Scholar
  11. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager M., & White P. (2012). Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier Ltd.:  Amsterdam,  The  Netherlands,  2012; pp. 135–189. [Google Scholar] [CrossRef]
  12. Hepler,  P.K.,  Vidali,  L.,  &  Cheung,  A.Y.  (2001). Polarized  cell  growth  in  higher  plants. Annu.Rev.  Cell.  Dev.  Biol.  17,  159–187. doi: 10.1146/annurev.cellbio.17.1.159 PubMed  Abstract  |  CrossRef  Full  Text  | Google Scholar
  13. Hiscox, J.D., & Israelstam GF. (1979). A Method for   the   Extraction   of   Chlorophyll   from Leaf Tissue without Maceration. Canadian Journal     of     Botany,     57,     1332-1334. https://doi.org/10.1139/b79-163
  14. Huang, L., Yang, J., Cui, X., Yang, H., Wang., S., & Zhuang,  H.  (2016).    Synergy  and  Transi-tion  of  Recovery  Efficiency  of  Nitrogen Fertilizer  in  Various  Rice  Genotypesun-der  Organic  Farming.  Sustainability,  8(9), 854.  https://doi.org/10.3390/su8090854
  15. Hurtado, S.M.C., Silva, C.A., Resende, Á.V., de Co-razza,  E.,  Shozo,  L.,  &  Satoshi  F.  (2010). Sensibilidade  do  clorofilômetro  para  di-agnóstico   nutricional   denitrogênio   no milho.   Ciência  e  Agrotecnologia,   34(3), 688–697. https://doi.org/10.1590/S1413-70542010000300023
  16. Isidra-Arellano,   M.C.,   Delaux,   P.M.,   &   Valds-Lopez,  O.  (2021).  The  Phosphate  Starva-tion Response System: Its Role in the Reg-ulation    of    Plant-Microbe    Interactions. Plant Cell Physiol. 2021;62:392–400. doi: 10.1093/pcp/pcab016.   [DOI]   [PubMed] [Google Scholar]
  17. Kızılgeç, İ.F., Yıldırım, M., Akıncı, C., Albayrak, Ö., & Basdemir, F. (2015).  The availability of  advanced  durum  wheat  population  in yield  and  quality  basis  selection.    Ziraat  Fakültesi  Dergisi-Süleyman  Demirel  Ün-iversitesi, 10(2), 62–68.
  18. Li,  P., Weng,  J.,  Zhang,  Q.,  Yu,  L.,  Yao,  Q.,  Chang, L., & Niu, Q. (2018). Physiological and Bio-chemical  Responses  of  Cucumis  melo  L. Chloroplasts   to   Low-Phosphate   Stress. Front.     Plant     Sci.     2018;9:1525.     doi: 10.3389/fpls.2018.01525.     [DOI]     [PMC free article] [PubMed] [Google Scholar]
  19. Marathe,  R.A.,  Murkute,  A.A.  &  Dhinesh,  B.K. (2016). Mineral Nutrient Deficiencies and Nutrient   Interactions   in   Pomegranate. Natl.   Acad.   Sci.   Lett.   2016;39:407–410. doi:  10.1007/s40009-016-0487-4.  [DOI] [Google Scholar]
  20. Maurel,  C.,  Boursiac,  Y.,  Luu,  D.T.,  Santoni,  V., Shahzad, Z.,  & Verdoucq, L. (2015).  Aqua-porins    in    Plants.    Physiol    Rev.    2015 Oct;95(4):1321-58. doi: 10.1152/physrev.00008.2015. PMID: 26336033.
  21. Mendoza-Tafolla,  R.O.,  Juarez-Lopez,  P.,  Onti-veros-Capurata,  R.E.,  Sandoval-Villa,  M., Iran,   A.T.,   &   Alejo-Santiago,   G.   (2019).  Rosit et al., 2025 /Simulation and Characterization of Macro-Nutrient Deficiency Symptoms of Abaca Grown Using NFTIJMABER 3985Volume 6| Number 8| August| 2025Estimating Nitrogen  and  Chlorophyll Sta-tus  of  Romaine Lettuce  Using SPAD  and at  LEAF  Readings. Not.  Bot.  Horti  Agro-bot.        Cluj-Napoca,        47(3),    751–756. https://doi.org/10.15835/nbha47311525
  22. Matias,  K.M.L.,  Sotto,  R.C.,  Bautista,  N.S.,  Prota-cio,  C.M.,  &  Magdalita,  P.M.  (2024).  Influ-ence of Drought Stress and Foliar Applica-tion  of  Salicylic  Acid  on  Early  Vegetative Stage  of  Cacao.  Philippine  Journal  of  Sci-ence, 153(2).
  23. Munar,  J.  (2024).  Revitalizing  the  abaca  indus-try. Manila Chronicle, May 28, 2024
  24. Negi,  S.,  Barry,  A.N.,  Friedland,  N.,  Sudasinghe, N.,  Subramanian,   S.,  Pieris,  S.,  Holguin, F.O.,  Dungan,  B.,  Schaub,  T.,  &  Sayre,  R. (2016).  Impact  of  nitrogen  limitation  on biomass,  photosynthesis,  and  lipid  accu-mulation in Chlorella sorokiniana. Journalof Applied Phycology, 28, 803–812
  25. Parac,  E.P.,  Cruz,  F.C.S.,  &  Lalusin.,  A.G.  (2021). Resistance  reaction  of  Abaca  (Musa  tex-tilis Nee) hybrids to bunchy top and estab-lishment  of  disease  severity  rating  scale for  screenhouse  screening.  Governance, 3(2), 18-26.
  26. Parvin,    K.,    Nahar,    K.,    Hasanuzzaman,    M., Bhuyan,   M.,   Mohsin,   S.M.,   &   Fujita   M. (2020).  Exogenous  vanillic  acid  enhances salt tolerance of tomato: Insight into plant antioxidant  defense  and  glyoxalase  sys-tems. Plant Physiol. Biochem. 2020;150:109–120. doi: 10.1016/j.plaphy.2020.02.030. [DOI] [PubMed] [Google Scholar]
  27. Philippine   Fiber   Industry   Development   Au-thority  (PhilFIDA).    (2023).    Fiber  statis-tics   2023.   https://philfida.da.gov.ph/in-dex.php/2016-11-10-03-32-59/2016-11-11-07-56-39
  28. Prado,  R.M.  (2021).  Mineral  nutrition  of  tropi-cal  plants.  Mineral  Nutrition  of  Tropical Plants. Austria, Springer Cham. 339p.
  29. Raymundo,  A.D. (2000). Saving abaca from the onslaught of the bunchy-top disease. Phil-ippine Agricultural Scientist 83:379-385.
  30. Salas,  F.,  Salas,  R.,  Pole,  V.N.,  &  Quevedo,  M. (2015).  Shelf-Life  and  Free  Radical  Scav-enging  Activity  of  Tomato  (Lycopersicon Esculentum Mill.) Fruits Coated with Safe Phytochemicals.  J.  Food  Nutr.  Sci..  3.  94-99. 10.11648/j.jfns.s.2015030102.28.
  31. Sardans,  J.  &  Peñuelas,  J.  (2021).  Potassium Control of Plant Functions: Ecological and Agricultural  Implications.  Plants,  10(2), 419. https://doi.org/10.3390/plants10020419
  32. Sawyer, J.E., Lundvall, J., Hawkins, J.S., & Barker, D.W.  (2011).    Sensing  nitrogen  stress  in corn. Iowa State University. https://store.extension.iastate.edu/Prod-uct/Sensing-Nitrogen-Stress-in-Corn-pdf
  33. Shah, S., Houborg, R., & McCabe, M.  (2017). Re-sponse    of    Chlorophyll,    Carotenoid    and SPAD-502  Measurement  to  Salinity  and Nutrient  Stress  in  Wheat  (Triticum  aes-tivum    L.).        Agronomy,        7(3),        61. https://doi.org/10.3390/agron-omy7030061
  34. Shahri, W., Tahir, I., & Ahad, B. (2014). Abaca Fi-ber: A Renewable Bio-Resource for Indus-trial   Uses   and   Other   Applications.   In Biomass  and  Bioenergy:  Processing  and Properties; Springer, 2014
  35. Sharman,  M.,  Thomas,  J.E.,  Skabo,  S.,  &  Holton, T.E. (2008). Abaca bunchy top virus, a new member  of  the  genus  Babuvirus  (family Nanoviridae). Archives of Virol-ogy.153:135-147.
  36. Shin, R., Berg, R.H.,  & Schachtman, D.P. (2005). Reactive oxygen species and root hairs in Arabidopsis  root  response  to   nitrogen, phosphorus   and   potassium   deficiency. Plant & Cell Physiology, 46, 1350–1357
  37. Sta. Cruz, F.C., Belen, G.B., & Alviar, A.N. (2016). Serological   and   Molecular   Detection   of Mixed  Bunchy  Top  and  Mosaic  Virus  In-fections in Abaca (Musa textilis Nee). Phil-ippine Agricultural Science99(1):68-78.
  38. Wang, M., Zheng, Q.,  Shen, Q., & Guo,  S. (2013). The  critical  role  of  potassium  in  plant stress response. Int. J. Mol. Sci. 2013;14:7370–7390. doi: 10.3390/ijms14047370.  [DOI]  [PMC  free article] [PubMed] [Google Scholar]
  39. Westerveld,  S.M.,  McKeown,  A.W.,  McDonald, M.R., & Scott-Dupree,  CD.  (2002). Chloro-phyll  and    nitrate    meters    as    nitrogen monitoring  tools  for  selected  vegetables  Rosit et al., 2025 /Simulation and Characterization of Macro-Nutrient Deficiency Symptoms of Abaca Grown Using NFTIJMABER3986Volume 6| Number 8| August|2025in  southern  Ontario.    In    XXVI    Interna-tional  Horticultural  Congress:    Toward  Ecologically Sound Fertilization Strategies  for  Field Vegetable  Production.  627, (pp  259–266). https://doi.org/10.17660/Acta-Hortic.2003.627.33
  40. Wieczorek, D., Żyszka-Haberecht,  B.,  Kafka,  A., & Lipok, J. (2022). Determination of phos-phorus  compounds  in  plant  tissues:  from colourimetry   to   advanced   instrumental analytical  chemistry.  Plant  Methods.  18. 22. 10.1186/s13007-022-00854-6.
  41. Zakariyya, F., Setyawan, B., & Wahyo, S. (2017). Stomatal,  Proline  and  Leaf  Water  Status Characters  of  Some  Cocoa  Clones  (Theo-broma cacao L.) on Prolonged Dry Season. Pelita Perkebunan: a Coffee and Cocoa Re-search Journal 33(1): 109-117. https://doi.org/10.3390/foods12183519