HomeInternational Journal of Multidisciplinary: Applied Business and Education Researchvol. 6 no. 8 (2025)

Comparative Study on Attention Span among Undergraduate Students

Jiecel Aira Louise C. Jacildo | Joe Carlo C. Lopez | Maria Queenie Joy M. De Leon | Maria Ryza I. Almario | Jerald Q. Vergara | Kimberly Ann S. Cantilero

Discipline: Education

 

Abstract:

Students face challenges in maintaining attention span, potentially in-fluenced by technology and multitasking habits demanded by the cur-rent school environment. Attention is the cognitive process that ena-bles individuals to focus their senses on a specific stimulus, identify its characteristics, and extract meaningful information. This process is crucial in examining human behavior, as it impacts task performance, social interactions, and overall well-being. With the vast amount of in-formation available on the internet, it has become increasingly chal-lenging to navigate and generalize individual attention spans, espe-cially in local contexts. Moreover, there are only a few studies regarding attention span among undergraduate students across year levels. This study employed a quantitative method, specifically a comparative de-sign, to assess Filipino undergraduate students' capacity to sustain at-tention across different year levels at a private university in Pampanga, Philippines. The researchers employed a Kruskal-Wallis test to analyze data collected from 280 undergraduate students recruited through a quota-sampling technique. Findings revealed that there is no signifi-cant difference (p = 0.14) in the attention span of undergraduate stu-dents, leading to the conclusion that year level does not determine the attentional capacity of students. The findings emphasized the need for inclusive and adaptive teaching strategies that equally cater to all year levels. Furthermore, supporting students’ cognitive health across all stages of higher education, regardless of year level, promotes sustained academic performance and mental well-being.



References:

  1. Amin,  K.  E.,  &  Mohamad,  F.  S.  (2021). Working Memory  Load  Influence  on  Control  of  At-tention   among   Malaysian   Undergradu-ates. Journal of Cognitive Sciences and Hu-man Development.7(1). https://doi.org/10.33736/JCSHD.2454.2021
  2. Fajardo,   M.   L.   N.,   Higuera-Trujillo,   J.   L.,   & Llinares,  C.  (2023). Lighting,  colour,  and geometry:  Which  has  the  greatest  influ-ence  on  students'  cognitive  processes?. Frontiers of Architectural Research, 12(4), 575-586. https://doi.org/10.1016/j.foar.2023.02.003
  3. Godwin, K. E., Leroux, A. J., Scupelli, P., & Fisher, A.  V.  (2022).  Classroom  design  and  chil-dren's attention allocation: Beyond the la-boratory  and  into  the  classroom. Mind, Brain,   and   Education,   16(3),   239-251. https://doi.org/10.1111/mbe.12319
  4. Haddock, A., Ward, N., Yu, R., & O’Dea, N. (2022). Positive effects of digital technology use by adolescents: A scoping review of the lit-erature.ProQuest,19(21), 1–17. https://doi.org/10.3390/ijerph192114009
  5. Hadi, S. A., Gharaibeh, M., & Alghazo, E. (2023). Impulsiveness    among    undergraduates from  the  United  Arab  Emirates  and  Jor-dan:  role  of  socio-demographic  variables. Health Psychology Research, 11. https://doi.org/10.52965/001c.81045
  6. Haliti-Sylaj, T., & Sadiku, A. (2024). Impact of Short Reels on Attention Span and Aca-demic Performance of Undergraduate Stu-dents.Eurasian Journal of Applied Linguis-tics,10(3), 60–68. http://dx.doi.org/10.32601/ejal.10306
  7. Hobbiss, M. H., & Lavie, N. (2024). Sustained se-lective attention in adolescence: Cognitive development  and  predictors  of  distracti-bility  at  school. Journal  of  Experimental Child Psychology, 238, 1–22. https://doi.org/10.1016/j.jecp.2023.105784
  8. Limniou,   M.,   Mansfield,   R.,   &   Petichakis,   C. (2019). Students’ views for a research-in-tensive  school  curriculum  in  psychology: research-teaching  nexus. Creative  Educa-tion, 10(4), 796-813. https://doi.org/10.4236/CE.2019.104059
  9. Medvedskaya, E. I. (2022). Features of the At-tention  Span  in  Adult  Internet  Us-ers.RUDN Journal of Psychology and Peda-gogics,19(2), 304–319. https://doi.org/10.22363/2313-1683-2022-19-2-304-319
  10. Ober,  P.,  Poulain,  T.,  Christof  Meigen,  Spielau, U., Sobek, C., Kiess, W., Igel, U., Lipek, T., & Vogel, M. (2024). Modifiable factors influ-encing  attention  performance  in  healthy children:  insights  from  a  comprehensive school nutrition study. BMC Public Health, 24(1). https://doi.org/10.1186/s12889-024-19059-8
  11. Ryzhkov,  E.  (2023).  The  Role  of  Attention  in Learning. Medium. https://ti-nyurl.com/57c5t52z
  12. Sasi,  A.  S.,  &  Hsu,  S.  T.  (2020). A  survey  on  the study  habits  of  the  Taiwanese  university students: Comparison of the four years of undergraduate   education. International Journal  of  Contemporary  Education,  3(1), 65-74. https://doi.org/10.11114/ijce.v3i1.4728
  13. Shah,  P.,  Thornton,  I.,  Kopitnik,  N.,  Hipskind,  J. (2024). Informed Consent.NCBI. https://www.ncbi.nlm.nih.gov/books/NBK430827/
  14. Small,  G.,  Lee,  J.,  Kaufman,  A.,  Jalil,  J.,  Siddarth, P., Gaddipati, H., Moody, T., & Bookheimer, S.  (2020).  Brain  health  consequences  of digital  technology  use. Dialogues  in  Clini-cal Neuroscience, 22(2), 179–187.
  15. Sooda,   K.,   Indiramma,   M.,   &   Kubakaddi,   S. (2024, December). Analyzing P300 Signals to  Assess  Undergraduate  Attention  Span Using  Impulse Neiry  BCI.  In  2024  Interna-tional  Conference  on  Brain  Computer  In-terface  &  Healthcare  Technologies  (iCon-BCIHT) (pp. 23-28). IEEE. https://doi.org/10.1109/iCon-BCIHT63907.2024.10882396
  16. Swargiary, K. (2023). The impact of study envi-ronment on students’ academic perfor-mance: An experimental research study.Authorea Preprints. https://doi.org/10.36227/techrxiv.170250911.12566888/v1
  17. Wickens,  C.  (2021).  Attention:  theory,  princi-ples,  models,  and  applications. Interna-tional  Journal  of  Human-Computer  Inter-action, 37(5), 403–417. https://doi.org/10.1080/10447318.2021.1874741
  18. Wu,  J.  Y.,  &  Cheng,  T.  (2019).  Who  is  better adapted in learning online within the per-sonal    learning    environment?    Relating gender  differences  in  cognitive  attention networks to digital distraction. Computers & Education, 128, 312-329. https://doi.org/10.1016/j.compedu.2018.08.016