HomeNRCP Research Journalvol. 24 no. 2 (2025)

Effectiveness of Different Surface Sterilization Protocols for the Isolation of Endolichenic Fungi from Ramalina

Thomas Edison E. Dela Cruz | Ghimel P. Espinosa | John Joshua T. Bellen | Sittie Aisha B. Macabago | Melfei E. Bungihan

Discipline: molecular biology, biophysics and biochemistry

 

Abstract:

Endolichenic fungi (ELF) thrives within the thallus of lichens. Its isolation remains challenging given the indeterminate number of microorganisms cohabiting within the lichen thallus. This study determines the most effective surface sterilization method from the different protocols and their modifications to isolate ELF from the fruticose lichen Ramalina. Our findings showed that the protocol as described by Maduranga et al. (2018) with the treatment of the lichen thalli with 70% ethanol for 10 secs followed by 0.5% commercial bleach solution for 3 mins, and 1 min washing of sterile distilled water for 3 consecutive times remained the most ideal for isolation. All lichen thallus explants treated with this surface-sterilization method yielded 100% isolation rate while the culture plate for the tissue prints exhibited no fungal growth (100% effectivity rate). Modifications of this method resulted in 95–100% isolation rates, but lower effectivity rates of 80–86%. In comparison with the other tested surface-sterilization protocols and their modifications, their effectivity rates vary from 57-95%, albeit with isolation rates between 95-100%. All nine surface-sterilization protocols tested in this study resulted in the isolation of 156 ELF from a single lichen host. Our study highlighted Philippine lichens as ideal hosts for a diverse assemblage of endolichenic fungi.



References:

  1. 1.Arnold, A. E., Miadlikowska, J., Higgins, K. L., Sarvate, S. D., Gugger, P., Way, A., Hofstetter, V., Kauff, F., & Lutzoni, F. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: Are lichens cradles of symbiotrophic fungal diversification? Systematic Biology, 58(3), 283. https://doi.org/10.1093/sysbio/syp001
  2. Bannister, P., Bannister, J. M., & Blanchon, D. J. (2004). Distribution, habitat, and relation to climatic factors of the lichen genus Ramalina in New Zealand. New Zealand Journal of Botany, 42(1), 121. https://doi.org/10.1080/0028825X.2004.9512894
  3. De Jesus, E. E., Hur, J. S., Notarte, K. I. R., Santiago, K. A. A., & dela Cruz, T. E. E. (2016). Antibacterial, antioxidant and cytotoxic activities of the corticolous lichens Canoparmelia aptata, Pannaria sp., and Parmotrema gardneri collected from Mt. Banahaw, Quezon, Philippines. Current Research on Environmental and Applied Mycology 6(3), 173. DOI:10.5943/cream/6/3/4
  4. Dela Cruz, T. E. E., & Santiago, K. A. A. (2021). In pursuit of promising microbes for drug discovery: tapping endolichenic fungi (ELF) from lichens. Acta Manilana, 69, 53. https://doi.org/10.53603/actamanil.69.2021.akmv6217
  5. Dela Cruz, T. E. E., Timbreza, L.P., Sangvichien, E., Notarte, K. I. R., Santiago, K. A. A. (2023). Comparative study on the antimicrobial activities and metabolic profiles of five Usnea species from the Philippines. Journal of Fungi 9(11), 1117. https://doi.org/10.3390/jof9111117
  6. Mendoza, F. F., Fleischhacker, A., Kopun, T., Grube, M., & Muggia, L. (2017). ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Molecular Ecology, 26(18), 4811. https://doi.org/10.1111/mec.14244
  7. Galinato, M., Baguinon J., Santiago, K. (2018). Review of the lichen genus Usnea in the Philippines. Studies in Fungi, 3(1), 39. https://doi.org/10.5943/sif/3/1/6
  8. Galinato, M., Santiago, K. A. A., Sangvichien, E., & dela Cruz, T. E. E. (2021). Antioxidant activities of fungi inhabiting Ramalina peruviana: insights on the role of endolichenic fungi in the lichen symbiosis. Current Research in Environmental & Applied Mycology, 11(1), 119. https://doi.org/10.5943/cream/11/1/10
  9. Gazo, S. M. T., Santiago, K. A. A., Tjitrosoedirjo, S. S., & dela Cruz, T. E. E. (2019). Antimicrobial and herbicidal activities of the fruticose lichen Ramalina from Guimaras Island, Philippines. Biotropia, 26(1), 23. https://doi.org/10.11598/btb.2019.26.1.836
  10. Gerlach, A., Clerc, P., Lücking, R., Moncada, B., Nobleza, J., Ohmura, Y., & Dal Forno M. (2023). The genus Usnea (Parmeliaceae, Ascomycota) in the southern Philippines: a first phylogenetic approach. The Lichenologist, 55, 451. doi:10.1017/S0024282923000579
  11. Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C. W., & Berg, G. (2014). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal, 9(2), 412. https://doi.org/10.1038/ismej.2014.138
  12. Hawksworth, D. L., & Grube, M. (2020). Lichens redefined as complex ecosystems. New Phytologist, 227(5), 1281. https://doi.org/10.1111/nph.16630
  13. He, J., Chen, G., Gao, H., Yang, F., Li, X., Peng, T., Guo, L., & Yao, X. (2012). Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia, 83(6), 1087. https://doi.org/10.1016/j.fitote.2012.05.002
  14. Kim, G. S., Ko, W., Kim, J. W., Jeong, M., Ko, S., Hur, J., Oh, H., Jang, J., & Ahn, J. S. (2018). Bioactive α-Pyrone derivatives from the endolichenic fungus Dothideomycetes sp. EL003334. Journal of Natural Products, 81(4), 1084. https://doi.org/10.1021/acs.jnatprod.7b01022
  15. Kellogg, J. J., & Raja, H. A. (2017). Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochemistry Reviews, 16(2), 271. https://doi.org/10.1007/s11101-016-9473-1
  16. Kumari, A., Joshi, H., Tripathi, A. H., Chand, G., Joshi, P., Tewari, L. M., Joshi, Y., Upreti, D. K., Bajpai, R., & Upadhyay, S. K. (2023). Assessment of in-vitro culture as a sustainable and eco-friendly approach of propagating lichens and their constituent organisms for bioprospecting applications. In J. Singh, R. Bajpai, & R. K. Gangwar (eds.) Biotechnology in Environmental Remediation, 129-154. Wiley-VCH GmbH. https://doi.org/10.1002/9783527839063.ch8
  17. Li, W.C., Zhou, J., Guo, S.Y. and Guo, L.D. (2007). Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Diversity, 25, 69.
  18. Li, X. B., Li, L., Zhu, R. X., Li, W., Chang, W. Q., Zhang, L. L., Wang, X. N., Zhao, Z. T., & Lou, H. X. (2015). Tetramic Acids and Pyridone Alkaloids from the Endolichenic Fungus Tolypocladium cylindrosporum. Journal of natural products, 78(9), 2155. https://doi.org/10.1021/np501018w
  19. Lutzoni, F., & Miadlikowska, J. (2009). Lichens. Current Biology, 19(13), R502. doi:10.1016/j.cub.2009.04.034
  20. Maduranga, K., Attanayake, R. N., Santhirasegaram, S., Weerakoon, G., & Paranagama, P. A. (2018). Molecular phylogeny and bioprospecting of endolichenic fungi (ELF) inhabiting in the lichens collected from a mangrove ecosystem in Sri Lanka. PLoS ONE, 13(8), e0200711. https://doi.org/10.1371/journal.pone.0200711
  21. Mark, K., Laanisto, L., Bueno, C. G., Niinemets, Ü., Keller, C., & Scheidegger, C. (2020). Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytologist, 227(5), 1362. https://doi.org/10.1111/nph.16475
  22. Muggia, L., Kopun, T., & Grube, M. (2017). Effects of growth media on the diversity of culturable fungi from lichens. Molecules, 22(5), 824. https://doi.org/10.3390/molecules22050824
  23. Muggia, L., & Grube, M. (2018). Fungal diversity in lichens: From extremotolerance to interactions with algae. Life, 8(2), 15. https://doi.org/10.3390/life8020015
  24. Nash, T. H., III, Ryan, B. D., Diederich, P., Gries, C., & Bungartz, F. (2004). Lichen Flora of the Greater Sonoran Desert Region, Volume II. Lichen Unlimited, 742.
  25. Oh, S., Wang, X. Y., Wang, L. S., Liu, P. G., & Hur, J. (2014). A note on the lichen genus Ramalina (Ramalinaceae, Ascomycota) in the Hengduan Mountains in China. Mycobiology, 42(3), 229. https://doi.org/10.5941/myco.2014.42.3.229
  26. Oh, S., Yang, J. H., Woo, J., Oh, S., & Hur, J. (2020). Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea. Sustainability, 12(9), 3769. https://doi.org/10.3390/su12093769
  27. Paguirigan, J. A. G., dela Cruz, T. E. E., Santiago, K. A. A., Gerlach, A., Aptroot, A. (2020) A checklist of lichens known from the Philippines. Current Research in Environmental & Applied Mycology 10(1), 319. Doi 10.5943/cream/10/1/29
  28. Park, C. H., Kim, K. M., Elvebakk, A., Kim, O., Jeong, G., & Hong, S. G. (2014). Algal and fungal diversity in Antarctic lichens. Journal of Eukaryotic Microbiology, 62(2), 196. https://doi.org/10.1111/jeu.12159
  29. Pawar, K., Gondalia, S., Shevkar, C., Gopal, E. V., & Kate, A.S. (2024). In S. K. Deshmukh, J. A. Takahashi, & S. Saxena (eds). Fungi Bioactive Metabolites, 141. Springer. https://doi.org/10.1007/978-981-99-5696-8_5
  30. Petrini, O., Hake, U., & Dreyfuss, M. M. (1990). An analysis of fungal communities isolated from fruticose lichens. Mycologia, 82(4), 444. https://doi.org/10.1080/00275514.1990.12025907
  31. Rosabal, D., & Pino-Bodas, R. (2024). A review of laboratory requirements to culture lichen mycobiont species. Journal of Fungi 10, 621. https://doi.org/10.3390/jof10090621
  32. Sancho, L. G., Allan Green, T. G., & Pintado, A. (2007). Slowest to fastest: Extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora - Morphology, Distribution, Functional Ecology of Plants, 202(8), 667. https://doi.org/10.1016/j.flora.2007.05.005.
  33. Santhirasegaram, S., Wickramarachchi, S. R., Attanayake, R. N., Weerakoon, G., Samarakoon, S., Wijeratne, K., & Paranagama, P. A. (2020). A novel cytotoxic compound from the endolichenic fungus, Xylaria psidii inhabiting the lichen, Amandinea medusulina. Natural Product Communications, 15(7), 1934578X2093301. https://doi.org/10.1177/1934578x20933017
  34. Santiago, K. A. A., & Ting, A. S. Y. (2019). Endolichenic fungi from common lichens as new sources for valuable bio-active compounds. In M. Akhtar, M. Swamy, U. Sinniah (eds). Natural Bio-active Compounds. Springer. https://doi.org/10.1007/978-981-13-7154-7_4
  35. Santiago, K.A.A., dela Cruz, T.E.E., Ting, A. (2021a) Diversity and bioactivity of endolichenic fungi in Usnea lichens of the Philippines. Czech Mycology 73(1): 1. https://doi.org/10.33585/cmy.73101
  36. Santiago, K. A. A., Edrada-Ebel, R., dela Cruz, T. E. E., Cheow, Y. L., & Ting, A. S. Y. (2021b). Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC–MS-based metabolomics. Biology, 10(3), 191. https://doi.org/10.3390/biology10030191
  37. Santiago, K.A.A., dela Cruz, T.E.E., Ting, A.S.Y. (2022) Endolichenic fungi from common Usnea lichens found in a montane forest in Malaysia: a study on diversity and bioactivity profiling. Asian Journal of Mycology 5(2), 18. doi 10.5943/ajom/5/2/3.
  38. Si, H., Wang, Y., Liu, Y., Li, S., Bose, T., & Chang, R. (2023). Fungal diversity associated with thirty-eight lichen species revealed a new genus of endolichenic fungi, Intumescentia gen. nov. (Teratosphaeriaceae). Journal of Fungi, 9(4), 423. https://doi.org/10.3390/jof9040423 
  39. Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488. https://doi.org/10.1126/science.aaf8287
  40. Taer, E. C., Dal Forno, M., Moncada, B., Amoroso, V. B., & Coritico, F. P. (2023). Lichens across land use types of Mt. Musuan, Bukidnon, Southern Philippines. Philippine Journal of Science, 152(6A), 2077. DOI:10.56899/152.6A.04
  41. Taer, E. C., Dal Forno, M., Aptroot, A., Moncada, B., Amoroso, V. B., & Coritico, F. P. (2024). New records of pyrenocarpous lichens from the Philippines. Folia Cryptogamica Estonica, 61, 39. https://doi.org/10.12697/fce.2024.61.05
  42. Tan, M., Castro, S., Oliva, P. M., Yap, R. P., Nakayama, A., Magpantay, H., & dela Cruz T. E. E. (2020) Bioprospecting of antibacterial constituents from the endolichenic fungi isolated from Parmotrema rampoddense. 3Biotech, 10, 212. https://doi.org/10.1007/s13205-020-02213-5
  43. Tan, M.A., dela Cruz, J.D., Magpantay, H.D., Apurillo, C.C.S., & dela Cruz, T.E.E. (2024) Isolation of griseofulvin from the endolichenic fungus Cubamyces menziesii (Berk.) Lücking inhabiting Parmotrema rampoddense (Nyl.) Hale. Science & Engineering Journal, 17, 432. https://doi.org/10.54645/202417SupKXN-49
  44. Vainio, E.A. (1909) Lichenes insularum philippinarum I. Philipp. J. Sci., C. 4(5), 651. https://www.biodiversitylibrary.org/page/699101#page/697/mode/1up
  45. Wang, Y., Zheng, Z., Liu, S., Zhang, H., Li, E., Guo, L., & Che, Y. (2010). Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. Journal of Natural Products, 73(5), 920. https://doi.org/10.1021/np100071z
  46. Wethalawe, A. N., Alwis, Y. V., Udukala, D. N., & Paranagama, P. A. (2021). Antimicrobial compounds isolated from Endolichenic fungi:  A review. Molecules 26, 3901. https://doi.org/10.3390/molecules26133901
  47. Wu, W., Dai, H., Bao, L., Ren, B., Lu, J., Luo, Y., Guo, L., Zhang, L., & Liu, H. (2011). Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. Journal of Natural Products, 74(5), 1303. https://doi.org/10.1021/np100909y
  48. Xie, F., Chang, W., Zhang, M., Li, Y., Li, W., Shi, H., Zheng, S., & Lou, H. (2016). Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans. Scientific Reports, 6(1). https://doi.org/10.1038/srep33687
  49. Yang, J. H., Oh, S., Kim, W., Woo, J., Kim, H., & Hur, J. (2021). Effect of isolation conditions on diversity of endolichenic fungal communities from a foliose lichen, Parmotrema tinctorum. Journal of Fungi, 7(5), 335. https://doi.org/10.3390/jof7050335
  50. Yuan, C., Ding, G., Wang, H. Y., Guo, Y. H., Shang, H., Ma, X. J., & Zou, Z. M. (2017). Polyketide-Terpene    Hybrid Metabolites                  from    an        Endolichenic Fungus Pestalotiopsis sp. BioMed Research International, 6961928. https://doi.org/10.1155/2017/6961928
  51. Zhang, K., Ren, J., Ge, M., Li, L., Guo, L., Chen, D., & Che, Y. (2014). Mono- and bis- furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia, 92, 79. https://doi.org/10.1016/j.fitote.2013.10.011