Effectiveness of Different Surface Sterilization Protocols for the Isolation of Endolichenic Fungi from Ramalina
Thomas Edison E. Dela Cruz | Ghimel P. Espinosa | John Joshua T. Bellen | Sittie Aisha B. Macabago | Melfei E. Bungihan
Discipline: molecular biology, biophysics and biochemistry
Abstract:
Endolichenic fungi (ELF) thrives within the thallus of lichens. Its isolation remains
challenging given the indeterminate number of microorganisms cohabiting within
the lichen thallus. This study determines the most effective surface sterilization
method from the different protocols and their modifications to isolate ELF from
the fruticose lichen Ramalina. Our findings showed that the protocol as described
by Maduranga et al. (2018) with the treatment of the lichen thalli with 70% ethanol
for 10 secs followed by 0.5% commercial bleach solution for 3 mins, and 1 min
washing of sterile distilled water for 3 consecutive times remained the most ideal for
isolation. All lichen thallus explants treated with this surface-sterilization method
yielded 100% isolation rate while the culture plate for the tissue prints exhibited
no fungal growth (100% effectivity rate). Modifications of this method resulted
in 95–100% isolation rates, but lower effectivity rates of 80–86%. In comparison
with the other tested surface-sterilization protocols and their modifications, their
effectivity rates vary from 57-95%, albeit with isolation rates between 95-100%. All
nine surface-sterilization protocols tested in this study resulted in the isolation of
156 ELF from a single lichen host. Our study highlighted Philippine lichens as ideal
hosts for a diverse assemblage of endolichenic fungi.
References:
- 1.Arnold, A. E., Miadlikowska, J., Higgins, K. L., Sarvate, S. D., Gugger, P., Way, A., Hofstetter, V., Kauff, F., & Lutzoni, F. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: Are lichens cradles of symbiotrophic fungal diversification? Systematic Biology, 58(3), 283. https://doi.org/10.1093/sysbio/syp001
- Bannister, P., Bannister, J. M., & Blanchon, D. J. (2004). Distribution, habitat, and relation to climatic factors of the lichen genus Ramalina in New Zealand. New Zealand Journal of Botany, 42(1), 121. https://doi.org/10.1080/0028825X.2004.9512894
- De Jesus, E. E., Hur, J. S., Notarte, K. I. R., Santiago, K. A. A., & dela Cruz, T. E. E. (2016). Antibacterial, antioxidant and cytotoxic activities of the corticolous lichens Canoparmelia aptata, Pannaria sp., and Parmotrema gardneri collected from Mt. Banahaw, Quezon, Philippines. Current Research on Environmental and Applied Mycology 6(3), 173. DOI:10.5943/cream/6/3/4
- Dela Cruz, T. E. E., & Santiago, K. A. A. (2021). In pursuit of promising microbes for drug discovery: tapping endolichenic fungi (ELF) from lichens. Acta Manilana, 69, 53. https://doi.org/10.53603/actamanil.69.2021.akmv6217
- Dela Cruz, T. E. E., Timbreza, L.P., Sangvichien, E., Notarte, K. I. R., Santiago, K. A. A. (2023). Comparative study on the antimicrobial activities and metabolic profiles of five Usnea species from the Philippines. Journal of Fungi 9(11), 1117. https://doi.org/10.3390/jof9111117
- Mendoza, F. F., Fleischhacker, A., Kopun, T., Grube, M., & Muggia, L. (2017). ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Molecular Ecology, 26(18), 4811. https://doi.org/10.1111/mec.14244
- Galinato, M., Baguinon J., Santiago, K. (2018). Review of the lichen genus Usnea in the Philippines. Studies in Fungi, 3(1), 39. https://doi.org/10.5943/sif/3/1/6
- Galinato, M., Santiago, K. A. A., Sangvichien, E., & dela Cruz, T. E. E. (2021). Antioxidant activities of fungi inhabiting Ramalina peruviana: insights on the role of endolichenic fungi in the lichen symbiosis. Current Research in Environmental & Applied Mycology, 11(1), 119. https://doi.org/10.5943/cream/11/1/10
- Gazo, S. M. T., Santiago, K. A. A., Tjitrosoedirjo, S. S., & dela Cruz, T. E. E. (2019). Antimicrobial and herbicidal activities of the fruticose lichen Ramalina from Guimaras Island, Philippines. Biotropia, 26(1), 23. https://doi.org/10.11598/btb.2019.26.1.836
- Gerlach, A., Clerc, P., Lücking, R., Moncada, B., Nobleza, J., Ohmura, Y., & Dal Forno M. (2023). The genus Usnea (Parmeliaceae, Ascomycota) in the southern Philippines: a first phylogenetic approach. The Lichenologist, 55, 451. doi:10.1017/S0024282923000579
- Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C. W., & Berg, G. (2014). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal, 9(2), 412. https://doi.org/10.1038/ismej.2014.138
- Hawksworth, D. L., & Grube, M. (2020). Lichens redefined as complex ecosystems. New Phytologist, 227(5), 1281. https://doi.org/10.1111/nph.16630
- He, J., Chen, G., Gao, H., Yang, F., Li, X., Peng, T., Guo, L., & Yao, X. (2012). Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia, 83(6), 1087. https://doi.org/10.1016/j.fitote.2012.05.002
- Kim, G. S., Ko, W., Kim, J. W., Jeong, M., Ko, S., Hur, J., Oh, H., Jang, J., & Ahn, J. S. (2018). Bioactive α-Pyrone derivatives from the endolichenic fungus Dothideomycetes sp. EL003334. Journal of Natural Products, 81(4), 1084. https://doi.org/10.1021/acs.jnatprod.7b01022
- Kellogg, J. J., & Raja, H. A. (2017). Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochemistry Reviews, 16(2), 271. https://doi.org/10.1007/s11101-016-9473-1
- Kumari, A., Joshi, H., Tripathi, A. H., Chand, G., Joshi, P., Tewari, L. M., Joshi, Y., Upreti, D. K., Bajpai, R., & Upadhyay, S. K. (2023). Assessment of in-vitro culture as a sustainable and eco-friendly approach of propagating lichens and their constituent organisms for bioprospecting applications. In J. Singh, R. Bajpai, & R. K. Gangwar (eds.) Biotechnology in Environmental Remediation, 129-154. Wiley-VCH GmbH. https://doi.org/10.1002/9783527839063.ch8
- Li, W.C., Zhou, J., Guo, S.Y. and Guo, L.D. (2007). Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Diversity, 25, 69.
- Li, X. B., Li, L., Zhu, R. X., Li, W., Chang, W. Q., Zhang, L. L., Wang, X. N., Zhao, Z. T., & Lou, H. X. (2015). Tetramic Acids and Pyridone Alkaloids from the Endolichenic Fungus Tolypocladium cylindrosporum. Journal of natural products, 78(9), 2155. https://doi.org/10.1021/np501018w
- Lutzoni, F., & Miadlikowska, J. (2009). Lichens. Current Biology, 19(13), R502. doi:10.1016/j.cub.2009.04.034
- Maduranga, K., Attanayake, R. N., Santhirasegaram, S., Weerakoon, G., & Paranagama, P. A. (2018). Molecular phylogeny and bioprospecting of endolichenic fungi (ELF) inhabiting in the lichens collected from a mangrove ecosystem in Sri Lanka. PLoS ONE, 13(8), e0200711. https://doi.org/10.1371/journal.pone.0200711
- Mark, K., Laanisto, L., Bueno, C. G., Niinemets, Ü., Keller, C., & Scheidegger, C. (2020). Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytologist, 227(5), 1362. https://doi.org/10.1111/nph.16475
- Muggia, L., Kopun, T., & Grube, M. (2017). Effects of growth media on the diversity of culturable fungi from lichens. Molecules, 22(5), 824. https://doi.org/10.3390/molecules22050824
- Muggia, L., & Grube, M. (2018). Fungal diversity in lichens: From extremotolerance to interactions with algae. Life, 8(2), 15. https://doi.org/10.3390/life8020015
- Nash, T. H., III, Ryan, B. D., Diederich, P., Gries, C., & Bungartz, F. (2004). Lichen Flora of the Greater Sonoran Desert Region, Volume II. Lichen Unlimited, 742.
- Oh, S., Wang, X. Y., Wang, L. S., Liu, P. G., & Hur, J. (2014). A note on the lichen genus Ramalina (Ramalinaceae, Ascomycota) in the Hengduan Mountains in China. Mycobiology, 42(3), 229. https://doi.org/10.5941/myco.2014.42.3.229
- Oh, S., Yang, J. H., Woo, J., Oh, S., & Hur, J. (2020). Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea. Sustainability, 12(9), 3769. https://doi.org/10.3390/su12093769
- Paguirigan, J. A. G., dela Cruz, T. E. E., Santiago, K. A. A., Gerlach, A., Aptroot, A. (2020) A checklist of lichens known from the Philippines. Current Research in Environmental & Applied Mycology 10(1), 319. Doi 10.5943/cream/10/1/29
- Park, C. H., Kim, K. M., Elvebakk, A., Kim, O., Jeong, G., & Hong, S. G. (2014). Algal and fungal diversity in Antarctic lichens. Journal of Eukaryotic Microbiology, 62(2), 196. https://doi.org/10.1111/jeu.12159
- Pawar, K., Gondalia, S., Shevkar, C., Gopal, E. V., & Kate, A.S. (2024). In S. K. Deshmukh, J. A. Takahashi, & S. Saxena (eds). Fungi Bioactive Metabolites, 141. Springer. https://doi.org/10.1007/978-981-99-5696-8_5
- Petrini, O., Hake, U., & Dreyfuss, M. M. (1990). An analysis of fungal communities isolated from fruticose lichens. Mycologia, 82(4), 444. https://doi.org/10.1080/00275514.1990.12025907
- Rosabal, D., & Pino-Bodas, R. (2024). A review of laboratory requirements to culture lichen mycobiont species. Journal of Fungi 10, 621. https://doi.org/10.3390/jof10090621
- Sancho, L. G., Allan Green, T. G., & Pintado, A. (2007). Slowest to fastest: Extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora - Morphology, Distribution, Functional Ecology of Plants, 202(8), 667. https://doi.org/10.1016/j.flora.2007.05.005.
- Santhirasegaram, S., Wickramarachchi, S. R., Attanayake, R. N., Weerakoon, G., Samarakoon, S., Wijeratne, K., & Paranagama, P. A. (2020). A novel cytotoxic compound from the endolichenic fungus, Xylaria psidii inhabiting the lichen, Amandinea medusulina. Natural Product Communications, 15(7), 1934578X2093301. https://doi.org/10.1177/1934578x20933017
- Santiago, K. A. A., & Ting, A. S. Y. (2019). Endolichenic fungi from common lichens as new sources for valuable bio-active compounds. In M. Akhtar, M. Swamy, U. Sinniah (eds). Natural Bio-active Compounds. Springer. https://doi.org/10.1007/978-981-13-7154-7_4
- Santiago, K.A.A., dela Cruz, T.E.E., Ting, A. (2021a) Diversity and bioactivity of endolichenic fungi in Usnea lichens of the Philippines. Czech Mycology 73(1): 1. https://doi.org/10.33585/cmy.73101
- Santiago, K. A. A., Edrada-Ebel, R., dela Cruz, T. E. E., Cheow, Y. L., & Ting, A. S. Y. (2021b). Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC–MS-based metabolomics. Biology, 10(3), 191. https://doi.org/10.3390/biology10030191
- Santiago, K.A.A., dela Cruz, T.E.E., Ting, A.S.Y. (2022) Endolichenic fungi from common Usnea lichens found in a montane forest in Malaysia: a study on diversity and bioactivity profiling. Asian Journal of Mycology 5(2), 18. doi 10.5943/ajom/5/2/3.
- Si, H., Wang, Y., Liu, Y., Li, S., Bose, T., & Chang, R. (2023). Fungal diversity associated with thirty-eight lichen species revealed a new genus of endolichenic fungi, Intumescentia gen. nov. (Teratosphaeriaceae). Journal of Fungi, 9(4), 423. https://doi.org/10.3390/jof9040423
- Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488. https://doi.org/10.1126/science.aaf8287
- Taer, E. C., Dal Forno, M., Moncada, B., Amoroso, V. B., & Coritico, F. P. (2023). Lichens across land use types of Mt. Musuan, Bukidnon, Southern Philippines. Philippine Journal of Science, 152(6A), 2077. DOI:10.56899/152.6A.04
- Taer, E. C., Dal Forno, M., Aptroot, A., Moncada, B., Amoroso, V. B., & Coritico, F. P. (2024). New records of pyrenocarpous lichens from the Philippines. Folia Cryptogamica Estonica, 61, 39. https://doi.org/10.12697/fce.2024.61.05
- Tan, M., Castro, S., Oliva, P. M., Yap, R. P., Nakayama, A., Magpantay, H., & dela Cruz T. E. E. (2020) Bioprospecting of antibacterial constituents from the endolichenic fungi isolated from Parmotrema rampoddense. 3Biotech, 10, 212. https://doi.org/10.1007/s13205-020-02213-5
- Tan, M.A., dela Cruz, J.D., Magpantay, H.D., Apurillo, C.C.S., & dela Cruz, T.E.E. (2024) Isolation of griseofulvin from the endolichenic fungus Cubamyces menziesii (Berk.) Lücking inhabiting Parmotrema rampoddense (Nyl.) Hale. Science & Engineering Journal, 17, 432. https://doi.org/10.54645/202417SupKXN-49
- Vainio, E.A. (1909) Lichenes insularum philippinarum I. Philipp. J. Sci., C. 4(5), 651. https://www.biodiversitylibrary.org/page/699101#page/697/mode/1up
- Wang, Y., Zheng, Z., Liu, S., Zhang, H., Li, E., Guo, L., & Che, Y. (2010). Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. Journal of Natural Products, 73(5), 920. https://doi.org/10.1021/np100071z
- Wethalawe, A. N., Alwis, Y. V., Udukala, D. N., & Paranagama, P. A. (2021). Antimicrobial compounds isolated from Endolichenic fungi: A review. Molecules 26, 3901. https://doi.org/10.3390/molecules26133901
- Wu, W., Dai, H., Bao, L., Ren, B., Lu, J., Luo, Y., Guo, L., Zhang, L., & Liu, H. (2011). Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. Journal of Natural Products, 74(5), 1303. https://doi.org/10.1021/np100909y
- Xie, F., Chang, W., Zhang, M., Li, Y., Li, W., Shi, H., Zheng, S., & Lou, H. (2016). Quinone derivatives isolated from the endolichenic fungus Phialocephala fortinii are Mdr1 modulators that combat azole resistance in Candida albicans. Scientific Reports, 6(1). https://doi.org/10.1038/srep33687
- Yang, J. H., Oh, S., Kim, W., Woo, J., Kim, H., & Hur, J. (2021). Effect of isolation conditions on diversity of endolichenic fungal communities from a foliose lichen, Parmotrema tinctorum. Journal of Fungi, 7(5), 335. https://doi.org/10.3390/jof7050335
- Yuan, C., Ding, G., Wang, H. Y., Guo, Y. H., Shang, H., Ma, X. J., & Zou, Z. M. (2017). Polyketide-Terpene Hybrid Metabolites from an Endolichenic Fungus Pestalotiopsis sp. BioMed Research International, 6961928. https://doi.org/10.1155/2017/6961928
- Zhang, K., Ren, J., Ge, M., Li, L., Guo, L., Chen, D., & Che, Y. (2014). Mono- and bis- furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia, 92, 79. https://doi.org/10.1016/j.fitote.2013.10.011
ISSN 2980-4728 (Online)
ISSN 0117-3294 (Print)