Ticks’ Antioxidant Complex and its Implications in Acaricide Resistance
Job A. Corcuera | Emmanuel P. Hernandez | Ian Cary B. Prado | Tetsuya Tanaka | Remil L. Galay
Discipline: others in veterinary sciences
Abstract:
Ticks are parasitic arthropods that feed on the blood of humans and animals,
making them notorious for the transmission of numerous diseases. To survive
their potentially toxic blood-feeding lifestyle, ticks have developed a complex
antioxidant response mechanism to counteract oxidative stress. While several
antioxidants have been identified in ticks, only a few have been fully studied in
terms of their functions. Chemical acaricides have traditionally been used and
remain to be widely utilized in the control of ticks. However, the emergence of tick
resistance to these acaricides has become a global concern, leading to economic
losses, decreased animal productivity, and the spread of tick-borne diseases. This
review article discusses the physiological functions of tick antioxidants and their
role in detoxification, focusing on how they are involved in acaricide resistance.
References:
- Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J., & Iqbal, Z. (2014). Acaricide resistance in cattle ticks and approaches to its management: The state of play. Veterinary Parasitology, 203(1-2), 6-20. https://doi.org/10.1016/j.vetpar.2014.03.006
- Aboelhadid, S. M., Arafa, W. M., Mahrous, L. N., Fahmy, M. M., & Kamel, A. A. (2018). Molecular detection of Rhipicephalus (Boophilus) annulatus resistance against deltamethrin in middle Egypt. Veterinary parasitology, regional studies and reports, 13, 198-204.
- Adamson, S., Browning, R., Singh, P., Nobles, S., Villarreal, A. & Karim, S. (2014). Transcriptional activation of antioxidants may compensate for selenoprotein deficiencies in Amblyomma maculatum (Acari: Ixodidae) injected with selK- or selM-dsRNA. Insect Molecular Biology, 23(4), 497-510. https://doi.org/10.1111/imb.12098
- Almazán, C., Lagunes, R., Villar, M., Canales, M., Rosario-Cruz, R., Jongejan, F., & de la Fuente, J. (2009). Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitology Research, 106(2), 471-479. https://doi.org/10.1007/s00436-009-1689-1
- Anderson, J. M., Sonenshine, D. E., & Valenzuela, J. G. (2008). Exploring the mialome of ticks: An annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics, 9, 552. https://doi.org/10.1186/1471-2164-9-552
- Arafa, W. M., Aboelhadid, S. M., Moawad, A., Shokeir, K. M., & Ahmed, O. (2020a). Toxicity, repellency, and anti-cholinesterase activities of thymol-eucalyptus combinations against phenotypically resistant Rhipicephalus annulatus ticks. Experimental & Applied Acarology, 81(2), 265–277. https://doi.org/10.1007/s10493-020-00506-1
- Arafa, W. M., Klafke, G. M., Tidwell, J. P., de León, A. A. P., & Esteve-Gassent, M. (2020b). Detection of single nucleotide polymorphism in the para-sodium channel gene of Rhipicephalus annulatus populations from Egypt resistant to deltamethrin. Ticks and Tick-borne Diseases, 11(5), 101488. https://doi.org/10.1016/j.ttbdis.2020.101488
- Arafa, W. M., Aboelhadid, S. M., Moawad, A., Shokeir, K. M., Ahmed, O., & Pérez de León, A. A. (2021). Control of Rhipicephalus annulatus resistant to deltamethrin by spraying infested cattle with a synergistic eucalyptus essential oil-thymol-deltamethrin combination. Veterinary Parasitology, 290, 109346. https://doi.org/10.1016/j.vetpar.2021.109346
- Baron, S., Barrera, R. A., Black, M., Bellgard, M. I., van Dalen, E. M. S., Fourie, J., & Maritz-Olivier, C. (2018). Differentially expressed genes in response to amitraz treatment suggest a proposed model of amitraz resistance in Rhipicephalus decoloratus tick. International Journal of Parasitology: Drugs and Drug Resistance, 8(3), 361-371. https://doi.org/10.1016/j.ijpddr.2018.06.005
- Bauer, H., Gromer, S., Urbani, A., Schnölzer, M., Schirmer, R. H., & Müller, H. M. (2003). Thioredoxin reductase from the malaria mosquito Anopheles gambiae. European Journal of Biochemistry, 270(18), 4272-4281. https://doi.org/10.1046/j.1432-1033.2003.03812.x
- Baxter, G. D., Green, P., Stuttgen, M., & Barker, S. C. (1999). Detecting resistance to organophosphates and carbamates in the cattle tick Boophilus microplus, with a propoxur-based biochemical test. Experimental and Applied Acarology, 23(10), 907-914. https://doi.org/10.1023/a:1006364816302
- Belova, O. A., Burenkova, L. A., & Karganova, G. G. (2012). Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks—Evidence of virus replication and changes in tick behavior. Ticks and Tick-borne Diseases, 3(4), 240-246. https://doi.org/10.1016/j.ttbdis.2012.05.005
- Benelli, G. (2020). Pathogens manipulating tick behavior—Through a glass, darkly. Pathogens, 9(8), 664. https://doi.org/10.3390/pathogens9080664
- Betancur Hurtado, O. J., & Giraldo-Ríos, C. (2019). Economic and health impact of the ticks in production animals. In M. Abubakar & P. K. Perera (Eds.) Ticks and tick-borne pathogens. IntechOpen.
- Braz, G. R., Moreira, M. F., Masuda, H., & Oliveira, P. L. (2002). Rhodnius heme-binding protein (RHBP) is a heme source for embryonic development in the blood-sucking bug Rhodnius prolixus (Hemiptera, Reduviidae). Insect Biochemistry and Molecular Biology, 32(4), 361-367. https://doi.org/10.1016/s0965-1748(01)00163-1
- Brites-Neto, J., Duarte, K. M., & Martins, T. F. (2015). Tick-borne infections in human and animal populations worldwide. Veterinary World, 8(3), 301-315. https://doi.org/10.14202/vetworld.2015.301-315
- Budachetri, K., & Karim, S. (2015). An insight into the functional role of thioredoxin reductase, a selenoprotein, in maintaining normal native microbiota in the Gulf Coast tick (Amblyomma maculatum). Insect Molecular Biology, 24(6), 570-581. https://doi.org/10.1111/imb.12184
- Budachetri, K., Kumar, D., & Karim, S. (2017). Catalase is a determinant of the colonization and transovarial transmission of Rickettsia parkeri in the Gulf Coast tick Amblyomma maculatum. Insect Molecular Biology, 26(4), 414-419. https://doi.org/10.1111/imb.12304
- Byamukama, B., Vudriko, P., Tumwebaze, M. A., Tayebwa, D. S., Byaruhanga, J., Angwe, M. K., Li, J., Galon, E. M., Ringo, A., Liu, M., Li, Y., Ji, S., Rizk, M. A., Moumouni, P. F. A., Lee, S. H., Sevinc, F., & Xuan, X. (2021). Molecular detection of selected tick-borne pathogens infecting cattle at the wildlife-livestock interface of Queen Elizabeth National Park in Kasese District, Uganda. Ticks and Tick-borne Diseases, 12(5), 101772. https://doi.org/10.1016/j.ttbdis.2021.101772
- Carmona-Ribeiro, A. M., Prieto, T., & Nantes, I. L. (2015). Nanostructures for peroxidases. Frontiers in Molecular Biosciences, 2, 50. https://doi.org/10.3389/fmolb.2015.00050
- Castro-Janer, E., Klafke, G. M., Capurro, M. L., & Schumaker, T. T. S. (2015). Cross-resistance between fipronil and lindane in Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 210, 77-83. https://doi.org/10.1016/j.vetpar.2015.03.011
- Chaitanya, R., Shashank, K., & Sridevi, P. (2016). Oxidative stress in invertebrate systems. In R. Ahmad (Ed.), Free radicals and diseases (pp. 51–68). IntechOpen. https://doi.org/10.5772/64573
- Champion, C. J., & Xu, J. (2017). The impact of metagenomic interplay in the mosquito redox homeostasis. Free Radical Biology and Medicine, 105, 79-85. https://doi.org/10.1016/j.freeradbiomed.2016.11.031
- Cheng, C. C., Sofiyatun, E., Chen, W. J., & Wang, L. C. (2021). Life as a vector of dengue virus: The antioxidant strategy of mosquito cells to survive viral infection. Antioxidants, 10(3), 395. https://doi.org/10.3390/antiox10030395
- Citelli, M., Lara, F. A., da Silva Vaz, I. Jr, & Oliveira, P. L. (2007). Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Molecular and Biochemical Parasitology, 151, 81-88. https://doi.org/10.1016/j.molbiopara.2006.10.008
- Coles, T. B., & Dryden, M. W. (2014). Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors, 7, 8. https://doi.org/10.1186/1756-3305-7-8
- Corley, S. W., Jonsson, N. N., Piper, E. K., Cutulle, C., Stear, M. J., & Seddon, J. M. (2013). Mutation in the Rm AOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16772-16777. https://doi.org/10.1073/pnas.1309072110
- Cossío-Bayúgar, R., Barhoumi, R., Burghardt, R. C., Wagner, G. G., & Holman, P. J. (2002). Basal cellular alterations of esterase, glutathione, glutathione S-transferase, intracellular calcium, and membrane potentials in coumaphos-resistant Boophilus microplus (Acari: Ixodidae) cell lines. Pesticide Biochemistry and Physiology, 72, 1-9. https://doi.org/10.1006/pest.2001.2578
- Cossío-Bayúgar, R., Miranda, E., & Holman, P. J. (2005). Molecular cloning of a phospholipid-hydroperoxide glutathione peroxidase gene from the tick Boophilus microplus (Acari: Ixodidae). Insect Biochemistry and Molecular Biology, 35, 1378-1387. https://doi.org/10.1016/j.ibmb.2005.08.008
- Cossío-Bayúgar, R., Miranda-Miranda, E., Martínez-Ibañez, F., Narváez-Padilla, V., & Reynaud, E. (2020). Physiological evidence that three known mutations in the para-sodium channel gene confer cypermethrin knockdown resistance in Rhipicephalus microplus. Parasites & Vectors, 13, 370. https://doi.org/10.1186/s13071-020-04227-7
- Crispell, G., Budachetri, K., & Karim, S. (2016). Rickettsia parkeri colonization in Amblyomma maculatum: The role of superoxide dismutases. Parasites & Vectors, 9, 291. https://doi.org/10.1186/s13071-016-1579-1
- DeJong, R. J., Miller, L. M., Molina-Cruz, A., Gupta, L., Kumar, S., & Barillas-Mury, C. (2007). Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences, 104, 2121-2126. https://doi.org/10.1073/pnas.0608407104
- de la Fuente, J., Kocan, K. M., & Contreras, M. (2015). Prevention and control strategies for ticks and pathogen transmission. Revue Scientifique et Technique de l'OIE, 34, 249-264. https://doi.org/10.20506/rst.34.1.2357
- Descamps, S. (2013). Winter temperature affects the prevalence of ticks in an Arctic seabird. PLoS ONE, 8, Article e77464. https://doi.org/10.1371/journal.pone.0065374
- Devenport, M., Alvarenga, P. H., Shao, L., Fujioka, H., Bianconi, M. L., Oliveira, P. L., & Jacobs-Lorena, M. (2006). Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry, 45, 9540–9549. https://doi.org/10.1021/bi0605991
- Dorrah, M., Bensaoud, C., Mohamed, A. A., Sojka, D., Bassal, T. T. M., & Kotsyfakis, M. (2021). Comparison of the hemolysis machinery in two evolutionarily distant blood-feeding arthropod vectors of human diseases. PLOS Neglected Tropical Diseases, 15, e0009693. https://doi.org/10.1371/journal.pntd.0009151
- Dupejova, J., Sterba, J., Vancova, M., & Grubhoffer, L. (2011). Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: Structural and functional characterization. Parasites & Vectors, 4, 4. https://doi.org/10.1186/1756-3305-4-4
- Duscher, G. G., Galindo, R. C., Tichy, A., Hummel, K., Kocan, K. M., & de la Fuente, J. (2014). Glutathione S-transferase affects permethrin detoxification in the brown dog tick, Rhipicephalus sanguineus. Ticks and Tick-borne Diseases, 5, 225-233. https://doi.org/10.1016/j.ttbdis.2013.11.006
- Enayati, A. A., Asgarian, F., Sharif, M., Boujhmehrani, H., Amouei, A., Vahedi, N., Boudaghi, B., Piazak, N., & Hemingway, J. (2009). Propetamphos resistance in Rhipicephalus bursa (Acari, Ixodidae). Veterinary parasitology, 162(1-2), 135-141. https://doi.org/10.1016/j.vetpar.2009.02.005
- Estrada-Peña, A., & de la Fuente, J. (2014). The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Research, 108, 104–128. https://doi.org/10.1016/j.antiviral.2014.05.016
- Fomenko, D. E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J. C., Siu, K. L., Winge, D. R., & Gladyshev, V. N. (2011). Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2729-2734. https://doi.org/10.1073/pnas.1010721108
- Fraga, A., Moraes, J., da Silva, J. R., Costa, E. P., Menezes, J., da Silva Vaz, I. Jr., Logullo, C., da Fonseca, R. N., & Campos, E. (2013). Inorganic polyphosphates regulate hexokinase activity and reactive oxygen species generation in mitochondria of Rhipicephalus (Boophilus) microplus embryo. International Journal of Biological Sciences, 9, 842–852. https://doi.org/10.7150/ijbs.6628
- Freitas, D. R., Rosa, R. M., Moraes, J., Campos, E., Logullo, C., Da Silva Vaz, I. Jr., & Masuda, A. (2007). Relationship between glutathione S-transferase, catalase, oxygen consumption, lipid peroxidation, and oxidative stress in eggs and larvae of Boophilus microplus (Acarina: Ixodidae). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 146(4), 688–694. https://doi.org/10.1016/j.cbpa.2006.04.032
- Galay, R. L., Aung, K. M., Umemiya-Shirafuji, R., Maeda, H., Matsuo, T., Kawaguchi, H., Miyoshi, N., Suzuki, H., Xuan, X., Mochizuki, M., Fujisaki, K., & Tanaka, T. (2013). Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. Journal of Experimental Biology, 216, 1905-1915. https://doi.org/10.1242/jeb.081240
- Galay, R. L., Umemiya-Shirafuji, R., Bacolod, E. T., Maeda, H., Kusakisako, K., Koyama, J., Tsuji, N., Mochizuki, M., Fujisaki, K., & Tanaka, T. (2014). Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress. PLoS ONE, 9(3), e90661. https://doi.org/10.1371/journal.pone.0090661
- Galay R.L., Umemiya-Shirafuji R., Mochizuki M., Fujisaki K., Tanaka T. (2015). Iron metabolism in hard ticks (Acari: Ixodidae): the antidote to their toxic diet. Parasitology International, 64(2), 182-189. https://doi.org/10.1016/j.parint.2014.12.005
- Ghosh, M., Sangwan, N., Sangwan, A. K., Kumar, R., & Gaur, R. S. (2017). Sexual alteration in antioxidant response and esterase profile in Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks. Journal of Parasitic Diseases, 41(1), 106–111. https://doi.org/10.1007/s12639-016-0758-5
- Ghosh, S., Kumar, R., Nagar, G., Kumar, S., Sharma, A. K., Srivastava, A., Kumar, S., Ajith Kumar, K. G., & Saravanan, B. C. (2015). Survey of acaricide resistance status of Rhipicephalus (Boophilus) microplus collected from selected places of Bihar, an eastern state of India. Ticks and Tick-borne Diseases, 6(5), 668–675. https://doi.org/10.1016/j.ttbdis.2015.05.013
- Graca-Souza, A. V., Maya-Monteiro, C., Paiva-Silva, G. O., Braz, G. R., Paes, M. C., Sorgine, M. H. F., Oliveira, M. F., & Oliveira, P. L. (2006). Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochemistry and Molecular Biology, 36, 322–335. https://doi.org/10.1016/j.ibmb.2006.01.009
- Gudderra, N. P., Neese, P. A., Sonenshine, D. E., Apperson, C. S., & Roe, R. M. (2001). Developmental profile, isolation, and biochemical characterization of a novel lipoglycoheme-carrier protein from the American dog tick, Dermacentor variabilis (Acari: Ixodidae) and observations on a similar protein in the soft tick, Ornithodoros parkeri (Acari: Argasidae). Insect Biochemistry and Molecular Biology, 31, 299–311. https://doi.org/10.1016/s0965-1748(00)00122-3
- Guglielmone, A. A., Robbins, R. G., Apanaskevich, D. A., Petney, T. N., Estrada-Peña, A., Horak, I. G., Shao, R., & Barker, S. C. (2010). The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa, 2528(1), 1–28.
- Hajdusek, O., Sima, R., Perner, J., Loosova, G., Harcubova, A., & Kopacek, P. (2016). Tick iron and heme metabolism—New target for an anti-tick intervention. Ticks and Tick-borne Diseases, 7(4), 565–572. https://doi.org/10.1016/j.ttbdis.2016.01.006
- Hajdusek, O., Sojka, D., Kopacek, P., Buresova, V., Franta, Z., Sauman, I., Winzerling, J., & Grubhoffer, L. (2009). Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proceedings of the National Academy of Sciences, 106(4), 1033–1038. https://doi.org/10.1073/pnas.0807961106
- He, H., Chen, A. C., Davey, R. B., Ivie, G. W., & George, J. E. (1999). Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochemical and Biophysical Research Communications, 261, 558–561. https://doi.org/10.1006/bbrc.1999.1076
- Hernandez, E. P., Anisuzzaman, Alim, M. A., Kawada, H., Kwofie, K. D., Ladzekpo, D., Koike, Y., Inoue, T., Sasaki, S., Mikami, F., Matsubayashi, M., Tanaka, T., Tsuji, N., & Hatta, T. (2022). Ambivalent roles of oxidative stress in triangular relationships among arthropod vectors, pathogens and hosts. Antioxidants, 11, 1254. https://doi.org/10.3390/antiox11071254
- Hernandez, E. P., Kusakisako, K., Talactac, M. R., Galay, R. L., Hatta, T., Fujisaki, K., Tsuji, N., & Tanaka, T. (2018a). Characterization and expression analysis of a newly identified glutathione S-transferase of the hard tick Haemaphysalis longicornis during blood-feeding. Parasites & Vectors, 11, 91. https://doi.org/10.1186/s13071-018-2667-1
- Hernandez, E. P., Kusakisako, K., Talactac, M. R., Galay, R. L., Hatta, T., Matsuo, T., Fujisaki, K., Tsuji, N., & Tanaka, T. (2018b). Glutathione S-transferases play a role in the detoxification of flumethrin and chlorpyrifos in Haemaphysalis longicornis. Parasites & Vectors, 11, 460. https://doi.org/10.1186/s13071-018-3044-9
- Hernandez, E. P., Shimazaki, K., Niihara, K., Umemiya-Shirafuji, R., Fujisaki, K., & Tanaka, T. (2023). Localization of secreted ferritin (FER2) in the embryos of the tick Haemaphysalis longicornis. Parasites & Vectors, 16, 42. https://doi.org/10.1186/s13071-023-05669-5
- Hernandez, E. P., Talactac, M. R., Fujisaki, K., & Tanaka, T. (2019). The case for oxidative stress molecule involvement in the tick pathogen interactions – an omics approach. Developmental and Comparative Immunology, 100, 103409. https://doi.org/10.1016/j.dci.2019.103409
- Holmstrom, K. M., & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signaling. Nature Reviews Molecular Cell Biology, 15, 411–421. https://doi.org/10.1038/nrm3801
- Hope, M., Menzies, M., & Kemp, D. (2010). Identification of a dieldrin resistance-associated mutation in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Journal of Economic Entomology, 103, 1355–1359. https://doi.org/10.1603/ec09267
- Janadaree Bandara, K. M. U., & Parakrama Karunaratne, S. H. P. (2017). Mechanisms of acaricide resistance in the cattle tick Rhipicephalus (Boophilus) microplus in Sri Lanka. Pesticide Biochemistry and Physiology, 139, 68–72. https://doi.org/10.1016/j.pestbp.2017.05.002
- Junquera, P., Hosking, B., Gameiro, M., & Macdonald, A. (2019). Benzoylphenyl ureas as veterinary antiparasitics. An overview and outlook with emphasis on efficacy, usage and resistance. Parasite, 26, 26. https://doi.org/10.1051/parasite/2019026
- Jyoti, Singh, N. K., Singh, H., Singh, N. K., & Rath, S. S. (2016). Multiple mutations in the acetylcholinesterase 3 gene associated with organophosphate resistance in Rhipicephalus (Boophilus) microplus ticks from Punjab, India. Veterinary Parasitology, 216, 108–117. https://doi.org/10.1016/j.vetpar.2015.12.004
- Kostaropoulos, I., Papadopoulos, A. I., Metaxakis, A., Boukouvala, E., & Papadopoulou-Mourkidou, E. (2001). Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochemistry and Molecular Biology, 31, 313–319. https://doi.org/10.1016/s0965-1748(00)00123-5
- Kumar, D., Budachetri, K., Meyers, V. C., & Karim, S. (2016). Assessment of tick antioxidant responses to exogenous oxidative stressors and insight into the role of catalase in the reproductive fitness of the Gulf Coast tick, Amblyomma maculatum. Insect Biochemistry and Molecular Biology, 25(4), 283–294. https://doi.org/10.1111/imb.12218
- Kumar, D., Embers, M., Mather, T. N., & Karim, S. (2019). Is selenoprotein K required for Borrelia burgdorferi infection within the tick vector Ixodes scapularis?. Parasites & Vectors, 12, 289. https://doi.org/10.1186/s13071-019-3548-y
- Kumar, R., Klafke, G. M., & Miller, R. J. (2020a). Voltage-gated sodium channel gene mutations and pyrethroid resistance in Rhipicephalus microplus. Ticks and Tick-borne Diseases, 11, 101404. https://doi.org/10.1016/j.ttbdis.2020.101404
- Kumar, R., Sharma, A. K., & Ghosh, S. (2020b). Menace of acaricide resistance in cattle tick, Rhipicephalus microplus in India: Status and possible mitigation strategies. Veterinary Parasitology, 278, 108993. https://doi.org/10.1016/j.vetpar.2019.108993
- Kusakisako, K., Galay, R. L., Umemiya-Shirafuji, R., Hernandez, E. P., Maeda, H., Talactac, M. R., Tsuji, N., Mochizuki, M., Fujisaki, K., & Tanaka, T. (2016). 2-Cys peroxiredoxin is required in successful blood-feeding, reproduction, and antioxidant response in the hard tick Haemaphysalis longicornis. Parasites & Vectors, 9, 457. https://doi.org/10.1186/s13071-016-1748-2
- Lara, F. A., Lins, U., Paiva-Silva, G., Almeida, I. C., Braga, C. M., Miguens, F. C., Oliveira, P. L., & Dansa-Petretski, M. (2003). A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: Aggregation inside a specialized organelle, the hemosome. Journal of Experimental Biology, 206, 1707–1715. https://doi.org/10.1242/jeb.00334
- Le Gall, V. L., Klafke, G. M., & Torres, T. T. (2018). Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. International Journal of Scientific Reports, 8, 12401. https://doi.org/10.1038/s41598-018-30907-7
- Li, A. Y., Davey, R. B., Miller, R. J., & George, J. E. (2003). Resistance to Coumaphos and Diazinon in Boophilus microplus (Acari: Ixodidae) and evidence for the involvement of an oxidative detoxification mechanism. Journal of Medical Entomology, 40, 482–490. https://doi.org/10.1603/0022-2585-40.4.482
- Li, R., Jia, Z., & Trush, M. A. (2016). Defining ROS in biology and medicine. The Reactive Oxygen Species (Apex), 1, 9–21. https://doi.org/10.20455/ros.2016.803
- Lima, V. L., Dias, F., Nunes, R. D., Pereira, L. O., Santos, T. S., Chiarini, L. B., Ramos, T. D., Silva-Mendes, B. J., Perales, J., Valente, R. H., & Oliveira, P. L. (2012). The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal. PLoS One, 7, e38349. https://doi.org/10.1371/journal.pone.0038349
- Maya-Monteiro, C. M., Daffre, S., Logullo, C., Lara, F. A., Alves, E. W., Capurro, M. L., Zingali, R., Almeida, I. C., & Oliveira, P. L. (2000). HeLp, a heme lipoprotein from the hemolymph of the cattle tick, Boophilus microplus. Journal of Biological Chemistry, 275, 36584–36589. https://doi.org/10.1074/jbc.M007344200
- Miller, A. F. (2012). Superoxide dismutases: Ancient enzymes and new insights. FEBS Letters, 586, 585–595. https://doi.org/10.1016/j.febslet.2011.10.048
- Miller, R. J., Davey, R. B., & George, J. E. (1999). Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology, 36, 533–538. https://doi.org/10.1093/jmedent/36.5.533
- Morgan, J. A., Corley, S. W., Jackson, L. A., Lew-Tabor, A. E., Moolhuijzen, P. M., & Jonsson, N. N. (2009). Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus (Boophilus) microplus associated with resistance to synthetic pyrethroid acaricides. International Journal for Parasitology, 39, 775–779. https://doi.org/10.1016/j.ijpara.2008.12.006
- Mounsey, K. E., Pasay, C. J., Arlian, L. G., Morgan, M. S., Holt, D. C., Currie, B. J., Walton, S. F., & McCarthy, J. S. (2010). Increased transcription of glutathione S-transferases in acaricide-exposed scabies mites. Parasites & Vectors, 3, 43. https://doi.org/10.1186/1756-3305-3-43
- Mugabi, K. N., Mugisha, A., & Ocaido, M. (2010). Socio-economic factors influencing the use of acaricides on livestock: A case study of the pastoralist communities of Nakasongola District, Central Uganda. Tropical Animal Health and Production, 42(1), 131–136. https://doi.org/10.1007/s11250-009-9396-6
- Nagar, G., Upadhaya, D., Sharma, A. K., Kumar, R., Fular, A., & Ghosh, S. (2021). Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks and Tick-borne Diseases, 12, 101610. https://doi.org/10.1016/j.ttbdis.2020.101610
- Nandi, A., Jyoti, Singh, H., & Singh, N. K. (2015). Esterase and glutathione S-transferase levels associated with synthetic pyrethroid resistance in Hyalomma anatolicum and Rhipicephalus microplus ticks from Punjab, India. Experimental and Applied Acarology, 66, 141–157. https://doi.org/10.1007/s10493-015-9884-5
- Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative medicine and cellular longevity, 2019, 9613090. https://doi.org/10.1155/2019/9613090
- Narasimhan, S., Sukumaran, B., Bozdogan, U., Thomas, V., Liang, X., DePonte, K., Marcantonio, N., Koski, R. A., Anderson, J. F., Kantor, F., & Fikrig, E. (2007). A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host & Microbe, 2, 7–18. https://doi.org/10.1016/j.chom.2007.06.001
- Narasimhan, S., & Fikrig, E. (2015). Tick microbiome: The force within. Trends in Parasitology, 31, 315–323. https://doi.org/10.1016/j.pt.2015.03.010
- Nishinaka, Y., Masutani, H., Nakamura, H., & Yodoi, J. (2001). Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. Redox Report, 6, 289–295. https://doi.org/10.1179/135100001101536427
- Nolan, J., Roulston, W. J., & Wharton, H. (1977). Resistance to synthetic pyrethroids in a DDT-resistant strain of Boophilus microplus. Pest Management Science, 8, 484–486. https://doi.org/10.1002/ps.2780080508
- Oliveira, J. H., Gonçalves, R. L., Lara, F. A., Dias, F. A., Gandara, A. C., Menna-Barreto, R. F., Edwards, M. C., Laurindo, F. R., Silva-Neto, M. A., Sorgine, M. H., & Oliveira, P. L. (2011). Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathogens, 7, e1001320. https://doi.org/10.1371/journal.ppat.1001320
- Oliveira, J. H. M., Talyuli, O. A. C., Goncalves, R. L. S., Paiva-Silva, G. O., Sorgine, M. H. F., Alvarenga, P. H., & Oliveira, P. L. (2017). Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLOS Neglected Tropical Diseases, 11, e0005525. https://doi.org/10.1371/journal.pntd.0005525
- Oliveira, P. L., Kawooya, J. K., Ribeiro, J. M., Meyer, T., Poorman, R., Alves, E. W., Walker, F. A., Machado, E. A., Nussenzveig, R. H., & Padovan, G. J. (1995). A heme-binding protein from hemolymph and oocytes of the blood-sucking insect, Rhodnius prolixus: Isolation and characterization. Journal of Biological Chemistry, 270, 10897–10901. https://doi.org/10.1074/jbc.270.18.10897
- Oliver, S. V., & Brooke, B. D. (2016). The role of oxidative stress in the longevity and insecticide resistance phenotype of the major malaria vectors Anopheles arabiensis and Anopheles funestus. PLoS ONE, 11, e0151049. https://doi.org/10.1371/journal.pone.0151049
- O'Reilly, A. O., Williamson, M. S., González-Cabrera, J., Turberg, A., Field, L. M., Wallace, B. A., & Davies, T. G. (2014). Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites. Pest Management Science, 70, 369–377. https://doi.org/10.1002/ps.3561
- Otali, D., Novak, R. J., Wan, W., Bu, S., Moellering, D. R., & De Luca, M. (2014). Increased production of mitochondrial reactive oxygen species and reduced adult lifespan in an insecticide-resistant strain of Anopheles gambiae. Bulletin of Entomological Research, 104, 323–333. https://doi.org/10.1017/S0007485314000091
- Paiva-Silva, G. O., Cruz-Oliveira, C., Nakayasu, E. S., Maya-Monteiro, C. M., Dunkov, B. C., Masuda, H., Almeida, I. C., & Oliveira, P. L. (2006). A heme-degradation pathway in a blood-sucking insect. Proceedings of the National Academy of Sciences, 103, 8030–8035. https://doi.org/10.1073/pnas.0602224103
- Pereira, L. O., Oliveira, P. L., Almeida, I. C., & Paiva-Silva, G. O. (2007). Biglutaminyl-biliverdin IX alpha as a heme degradation product in the dengue fever insect-vector Aedes aegypti. Biochemistry, 46, 6822–6829. https://doi.org/10.1021/bi700011d
- Perner, J., Sobotka, R., Sima, R., Konvickova, J., Sojka, D., Oliveira, P. L., Hajdusek, O., & Kopacek, P. (2016). Acquisition of exogenous haem is essential for tick reproduction. eLife, 5, e12318. https://doi.org/10.7554/eLife.12318
- Pfäffle, M., Littwin, N., Muders, S. V., & Petney, T. N. (2013). The ecology of tick-borne diseases. International Journal for Parasitology, 43, 1059–1077. https://doi.org/10.1016/j.ijpara.2013.06.009
- Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
- Rhee, S. G., Woo, H. A., Kil, I. S., & Bae, S. H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. Journal of Biological Chemistry, 287, 4403–4410. https://doi.org/10.1074/jbc.R111.283432
- Rochlin, I. & Toledo, A. (2020). Emerging tick-borne pathogens of public health importance: a mini-review. Journal of Medical Microbiology, 69(6), 781–791. https://doi.org/10.1099/jmm.0.001206
- Rodriguez-Vivas, R. I., Jonsson, N. N., & Bhushan, C. (2018). Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research, 117, 3–29. https://doi.org/10.1007/s00436-017-5677-6
- Sabadin, G. A., Parizi, L. F., Kiio, I., Xavier, M. A., da Silva Matos, R., Camargo-Mathias, M. I., Githaka, N. W., Nene, V., & da Silva Vaz, I. Jr. (2017). Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation. Vaccine, 35, 6649–6656. https://doi.org/10.1016/j.vaccine.2017.10.026
- Sabadin, G. A., Xavier, M. A., & Vaz Jr, I. S. (2019). Control of redox homeostasis in tick blood feeding. Acta Scientiae Veterinariae, 47, Article 89. https://doi.org/10.22456/1679-9216.94819
- Sabadin, G. A., Salomon, T. B., Leite, M. S., Benfato, M. S., Oliveira, P. L., & da Silva Vaz, I., Jr (2021). An insight into the functional role of antioxidant and detoxification enzymes in adult Rhipicephalus microplus female ticks. Parasitology International, 81, 102274. https://doi.org/10.1016/j.parint.2020.102274
- Saldivar, L., Guerrero, F. D., Miller, R. J., Bendele, K. G., Gondro, C., & Brayton, K. A. (2008). Microarray analysis of acaricide-inducible gene expression in the southern cattle tick, Rhipicephalus (Boophilus) microplus. Insect Molecular Biology, 17, 597–606. https://doi.org/10.1111/j.1365-2583.2008.00831.x
- Sangster, N. C. (2001). Managing parasiticide resistance. Veterinary Parasitology, 98, 89–109. https://doi.org/10.1016/s0304-4017(01)00425-3
- Saramago, L., Gomes, H., Aguilera, E., Cerecetto, H., González, M., Cabrera, M., Alzugaray, M. F., da Silva Vaz Junior, I., Nunes da Fonseca, R., Aguirre-López, B., Cabrera, N., Pérez-Montfort, R., Merlino, A., Moraes, J., & Álvarez, G. (2018). Novel and selective Rhipicephalus microplus triosephosphate isomerase inhibitors with acaricidal activity. Veterinary Sciences, 5, 74. https://doi.org/10.3390/vetsci5030074
- Sarıkaya, E., & Doğan, S. (2020). Glutathione peroxidase in health and diseases. In M. D. Bagatini (Ed.), Glutathione system and oxidative stress in health and disease (pp. 49). London: IntechOpen. https://doi.org/10.5772/intechopen.91009
- Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 360, 1–16. https://doi.org/10.1042/0264-6021:3600001
- Shyma, K. P., Kumar, S., Sharma, A. K., Ray, D. D., & Ghosh, S. (2012). Acaricide resistance status in Indian isolates of Hyalomma anatolicum. Experimental & applied acarology, 58(4), 471–481. https://doi.org/10.1007/s10493-012-9592-3
- Sojka, D., Franta, Z., Horn, M., Caffrey, C. R., Mareš, M., & Kopáček, P. (2013). New insights into the machinery of blood digestion by ticks. Trends in Parasitology, 29, 276–285. https://doi.org/10.1016/j.pt.2013.04.002
- Sojka, D., Pytelková, J., Perner, J., Horn, M., Konvičková, J., Schrenková, J., Mareš, M., & Kopáček, P. (2016). Multienzyme degradation of host serum albumin in ticks. Ticks and Tick-borne Diseases, 7(4), 604–613. https://doi.org/10.1016/j.ttbdis.2015.12.014
- Stone, N. E., Olafson, P. U., Davey, R. B., Buckmeier, G., Bodine, D., Sidak-Loftis, L. C., Giles, J. R., Duhaime, R., Miller, R. J., Mosqueda, J., Scoles, G. A., Wagner, D. M., & Busch, J. D. (2014). Multiple mutations in the para-sodium channel gene are associated with pyrethroid resistance in Rhipicephalus microplus from the United States and Mexico. Parasites and Vectors, 7, 456. https://doi.org/10.1186/s13071-014-0456-z
- Takata, M., Misato, S., Ozoe, F., & Ozoe, Y. (2020). A point mutation in the β-adrenergic-like octopamine receptor: Possible association with amitraz resistance. Pest Management Science, 76, 3720–3728. https://doi.org/10.1002/ps.5921
- Talalay, P. (2000). Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors, 12(1–4), 5–11. https://doi.org/10.1002/biof.5520120102
- Tavares, C. P., Sabadin, G. A., Sousa, I. C., Gomes, M. N., Soares, A. M. S., Monteiro, C. M. O., Vaz, I. S. Jr., & Costa-Junior, L. M. (2022). Effects of carvacrol and thymol on the antioxidant and detoxifying enzymes of Rhipicephalus microplus (Acari: Ixodidae). Ticks and Tick-borne Diseases, 13(3), Article 101929. https://doi.org/10.1016/j.ttbdis.2022.101929
- Taylor, D.J., (2006). Innate immunity in ticks: a review. Journal of the Acarological Society of Japan, 15, 109–127. [A1]
- Temeyer, K. B., Davey, R. B., & Chen, A. C. (2004). Identification of a third Boophilus microplus (Acari: Ixodidae) cDNA presumptively encoding an acetylcholinesterase. Journal of Medical Entomology, 41, 259–268. https://doi.org/10.1603/0022-2585-41.3.259
- Temeyer, K. B., Pruett, J. H., Olafson, P. U., & Chen, A. C. (2007). R86Q, a mutation in BmAChE3 yielding a Rhipicephalus microplus organophosphate-insensitive acetylcholinesterase. Journal of Medical Entomology, 44, 1013–1018. https://doi.org/10.1603/0022-2585(2007)44[1013:ramiby]2.0.co;2
- Thorpe, G. W., Fong, C. S., Alic, N., Higgins, V. J., & Dawes, I. W. (2004). Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative stress-response genes. Proceedings of the National Academy of Sciences of the United States of America, 101, 6564–6569. https://doi.org/10.1073/pnas.0305888101
- Untalan, P. M., Guerrero, F. D., Haines, L. R., & Pearson, T. W. (2005). Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochemistry and Molecular Biology, 35, 141–151. https://doi.org/10.1016/j.ibmb.2004.10.009
- Whitehead, G. B. (1961). Investigation of the mechanism of resistance to sodium arsenite in the blue tick, Boophilus decoloratus Koch. Journal of Insect Physiology, 7, 177–185. https://doi.org/10.1016/0022-1910(61)90070-1
- Whiten, S. R., Eggleston, H., & Adelman, Z. N. (2018). Ironing out the details: Exploring the role of iron and heme in blood-sucking arthropods. Frontiers in Physiology, 8, 1134. https://doi.org/10.3389/fphys.2017.01134
- Yu, Z., Wang, R., Zhang, T., Wang, T., Nwanade, C. F., Pei, T., Bai, R., Wang, Z., & Liu, J. (2023). The genome-wide characterization and associated cold-tolerance function of the superoxide dismutase in the cold response of the tick Haemaphysalis longicornis. Pesticide Biochemistry and Physiology, 195, Article 105573. https://doi.org/10.1016/j.pestbp.2023.105573
- Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7, 66. https://doi.org/10.3390/antiox7050066
ISSN 2980-4728 (Online)
ISSN 0117-3294 (Print)