HomeIsabela State University Linker: Journal of Engineering, Computing and Technologyvol. 2 no. 1 (2025)

Development of an Integrated Natural and Socioeconomic Indicators Monitoring System for Bulacan Using Earth Intelligence Tools

Mark Neil Pascual | Jeffrey T. Leonen

Discipline: information systems

 

Abstract:

This study introduced an Integrated Natural and Socioeconomic Indicators Monitoring System for Bulacan aimed at strengthening local flood risk assessment and enhancing disaster resilience. It aligns with broader disaster risk reduction goals by integrating real-time Earth observation data, predictive analytics, and stakeholder-centered design to support proactive, community-level decision-making. The system adopted a Single Page Application (SPA) architecture using React.js for dynamic visualization and Django REST API for efficient backend data processing, chosen for their scalability, responsiveness, and suitability for real-time applications. Methodologically, the study follows a Design and Development Research (DDR) approach integrating satellite data, geospatial layers, socioeconomic indicators, and local dam telemetry. Stakeholder testing in Meycauayan City revealed substantial improvements in flood prediction accuracy, supporting timely response actions. Results also showed high satisfaction levels among users, with notable gains in usability and decision support. The key challenges included data integration and maintaining responsiveness during peak data loads. Overall, the study contributes a practical, replicable tool that addresses key limitations in fragmented disaster monitoring systems. Recommendations include expanding multi-hazard capabilities, stakeholder training, and continued system enhancement to advance resilience efforts in flood-prone regions.



References:

  1. Abante, A. M., Abante, C. G., Bartolata, J., Cobilla, M., Rosalada, J. P., Octeza, F., & Torres, E. (2023). Land use policy area (LUPA): A stratagem towards advanced preparedness in the ArcGIS platform. International Journal of Computing Sciences Research, 7, 1273–1286. https://doi.org/10.25147/ijcsr.2017.001.1.100
  2. Adu-Gyamfi, B., Ariyaningsih, A., Zuquan, H., Yamazawa, N., Kato, A., & Shaw, R. (2024). Reflections on science, technology and innovation on the aspirations of the Sendai Framework for Disaster Risk Reduction. International Journal of Disaster Resilience in the Built Environment, 15(2), 289–302.
  3. Ahmed, I., Das (Pan), N., Debnath, J., Bhowmik, M., & Bhattacharjee, S. (2024). Flood hazard zonation using GIS-based multi-parametric analytical hierarchy process. Geosystems and Geoenvironment, 3(2). https://doi.org/10.1016/j.geogeo.2023.100250
  4. Albano, H. B. (2025). Empowering local government units with open-source tools: Building a dynamic web-based information system. Isabela State University Linker: Journal of Engineering, Computing, and Technology, 1(1), 1–14. https://doi.org/10.65141/ject.v1i1.n1
  5. Archieval, M. J., Vinluan, A. A., & Villegas, R. A. (2024). Evacuation operation management system using multi-objective artificial bee colony. Isabela State University Linker: Journal of Engineering, Computing, and Technology, 1(2), 26–39. https://doi.org/10.65141/ject.v1i2.n3
  6. Aspiras, K. F. (2022). Building Metropolitan Manila’s institutional resilience in the context of disaster risk reduction and management. In Disaster Risk Reduction for Resilience: Disaster Risk Management Strategies (pp. 317–331). Springer. https://doi.org/10.1007/978-3-030-72196-1_12
  7. Bardiago, G. V., Santa Monica, J. B. D., & Feliciano, C. G. M. (2024). HealthSentry: Design and development of municipal health condition monitoring using spatio-temporal analysis and geo-mapping. Isabela State University Linker: Journal of Education, Social Sciences, and Allied Health, 1(1), 91–106. Retrieved from https://www.isujournals.ph/index.php/jessah/article/view/46
  8. Brown de Colstoun, E. C., Huang, C., Wang, P., Tilton, J. C., Tan, B., Phillips, J., Niemczura, S., Ling, P.-Y., & Wolfe, R. E. (2017). Global man-made impervious surface (GMIS) dataset from Landsat (Version 1.00) [Dataset and images via ArcGIS map service]. Palisades, NY: NASA SEDAC.
  9. Bulacan Provincial Disaster Risk Reduction and Management Office. (n.d.). Bulacan flood event reports. Retrieved from Google Drive (publicly accessible reports folder)
  10. Canlas, I. P. (2023). Three decades of disaster risk reduction education: A bibliometric study. Natural Hazards Research, 3(2), 326–335. https://doi.org/10.1016/j.nhres.2023.02.007
  11. Carrasco, S., & Egbelakin, T. (2023). Adaptive mixed methods research for evaluating community resilience and the built environment. In Mixed Methods Research Design for the Built Environment (pp. 233–250). CRC Press. https://doi.org/10.1201/9781003204046-17
  12. Center for International Earth Science Information Network-CIESIN-Columbia University. (2021). Low Elevation Coastal Zone (LECZ) urban-rural population and land area estimates, version 3 (Version 3.00) [Dataset and images via ArcGIS map service]. Palisades, NY: NASA SEDAC. https://doi.org/10.7927/D1X1-D702
  13. Center for International Earth Science Information Network-CIESIN-Columbia University. (2022). Global Gridded Relative Deprivation Index (GRDI), version 1 (Version 1.00) [Dataset and images via ArcGIS map service]. Palisades, NY: NASA SEDAC. https://doi.org/10.7927/3XXE-AP97
  14. Cepero, T., Montané-Jiménez, L. G., & Maestre-Góngora, G. P. (2025). A framework for designing user-centered data visualizations in smart city technologies. Technological Forecasting and Social Change, 210. https://doi.org/10.1016/j.techfore.2024.123855
  15. Department of Science and Technology – Project NOAH. (2015a). Flood hazard map via open-hazards-ph Mapbox map service and dataset (ESRI format) from Project NOAH public Google Drive.
  16. Department of Science and Technology – Project NOAH. (2015b). Storm surge hazard maptiles via open-hazards-ph Mapbox map service. National Institute of Geological Sciences, University of the Philippines.
  17. European Commission. (2024). INFORM: Shared evidence for managing crises and disasters (pp. 1–22). https://doi.org/10.2760/817042
  18. Goh, M. L., Manahan, V. A. M., Mangalus, C. J., Carreon, R. J., Ong, C. C., & Vicente, H. (2023). iAlerto: A web and mobile alert system for Pasig City Disaster Risk Reduction Management Office (PCDRRMO) with mobile GPS service integration. International Journal of Computing Sciences Research, 7, 1092–1108. https://doi.org/10.25147/ijcsr.2017.001.1.93
  19. Group on Earth Observations. (2017). Human Planet Initiative (GEO). Retrieved from https://ghsl.jrc.ec.europa.eu/HPI.php
  20. Group on Earth Observations. (2025). Earth Intelligence for All: GEO POST 2025 Strategy.
  21. Hadi, F. A. A., Sidek, L. M., Salih, G. H. A., Basri, H., Sammen, S. S., Dom, N. M., Ali, Z. M., & Ahmed, A. N. (2024). Machine learning techniques for flood forecasting. Journal of Hydroinformatics, 26(4), 779–799. https://doi.org/10.2166/hydro.2024.208
  22. Joyice, M. H., Vidya, K. V. S., Lakshmi, L. V., Juilath, M., Prajwala, K., & Vasarao, P. S. (2024). Identifying flood prediction using machine learning techniques. International Journal of Innovative Science and Research Technology, 9(3), 144–147. https://doi.org/10.38124/ijisrt/ijisrt24mar112
  23. Joint Research Centre. (2020). INFORM Risk. Retrieved from https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Risk/Methodology
  24. Lagmay, A. M., & Kerle, N. (2015). Storm-surge models helped for Hagupit. Nature, 519(7544), 414. https://doi.org/10.1038/519414b
  25. Lapidez, J. P., Tablazon, J., Dasallas, L., Gonzalo, L. A., Cabacaba, K. M., Ramos, M. M. A., Suarez, J. K., Santiago, J., Lagmay, A. M. F., & Malano, V. (2015). Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks. Natural Hazards and Earth System Sciences, 15(7), 1473–1481. https://doi.org/10.5194/nhess-15-1473-2015
  26. Murata, H., Saitoh, K., & Sumida, Y. (2018). True color imagery rendering for Himawari-8 with a color reproduction approach based on the CIE XYZ color system. True Col, 96B, 211–238. https://doi.org/10.2151/jmsj.2018-049
  27. Ogbuene, E. B., Eze, C. A., Aloh, O. G., Oroke, A. M., Udegbunam, D. O., Ogbuka, J. C., Achoru, F. E., Ozorme, V. A., Anwara, O., Chukwunonyelum, I., Nebo, A. N., & Okolo, O. J. (2024). Application of machine learning for flood prediction and evaluation in southern Nigeria. Atmospheric and Climate Sciences, 14(3), 299–316. https://doi.org/10.4236/acs.2024.143019
  28. Patel, R., & Patel, A. (2024). Evaluating the impact of climate change on drought risk in semi-arid region using GIS technique. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2024.101957
  29. Safaeian, M., Moses, R., Ozguven, E. E., & Dulebenets, M. A. (2024). An optimization-based risk management framework with risk interdependence for effective disaster risk reduction. Progress in Disaster Science, 21. https://doi.org/10.1016/j.pdisas.2024.100313
  30. Saraswat, J. K., & Choudhari, S. (2025). Integrating big data and cloud computing into the existing system and performance impact: A case study in manufacturing. Technological Forecasting and Social Change, 210, 123883. https://doi.org/10.1016/j.techfore.2024.123883
  31. Sentinel Hub by Planet Labs. (n.d.). Sentinel Hub Collections.
  32. Sparks, A. (2018). nasapower: A NASA POWER global meteorology, surface solar energy and climatology data client for R. Journal of Open Source Software, 3(30), 1035. https://doi.org/10.21105/joss.01035
  33. Tablazon, J., Caro, C. V., Lagmay, A. M. F., Briones, J. B. L., Dasallas, L., Lapidez, J. P., Santiago, J., Suarez, J. K., Ladiero, C., Gonzalo, L. A., Mungcal, M. T. F., & Malano, V. (2015). Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals. Natural Hazards and Earth System Sciences, 15(3), 557–570. https://doi.org/10.5194/nhess-15-557-2015
  34. Wang, P., Huang, C., Brown de Colstoun, E. C., Tilton, J. C., & Tan, B. (2017). Global human built-up and settlement extent (HBASE) dataset from Landsat (Version 1.00) [Dataset and images via ArcGIS map service]. Palisades, NY: NASA SEDAC.