HomeJournal of Interdisciplinary Perspectivesvol. 3 no. 12 (2025)

Effects of Squash (Cucurbita maxima) Meal on Growth and Performance in Broiler Chicken Diets

Marianne A. Fernandez | Julius T. Vergara

Discipline: food and beverage studies (non-specific)

 

Abstract:

This study examines the potential benefits of incorporating squash (Cucurbita maxima) meal into broiler chicken diets to enhance growth performance and feed conversion efficiency. Using a randomized complete block design, the research evaluated four different treatments: a control diet with 100% formulated feed, and three experimental diets with 5%, 10%, and 15% squash meal (SM) inclusion. Over a 20-day feeding period, various metrics were assessed, including initial weight, final weight, weight gain, feed consumption, and feed conversion efficiency (FCE). The findings revealed that higher levels of squash meal supplementation, particularly at 15% inclusion, significantly increased final weight, weight gain, and feed conversion efficiency. Notably, feed consumption remained consistent across all treatments. The research highlights the promising potential of squash meal, especially at a 15% inclusion rate, as an effective dietary supplement for promoting broiler growth. However, further studies are needed to explore the optimal balance between growth enhancement and feed consumption.



References:

  1. Ahmad, R., Yu, Y., Hsiao, F. S., Su, C., Liu, H., Tobin, I., & Cheng, Y. (2022).  Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function, and potential mitigation by probiotics. Animals (Basel) 12(17): 2297. https://doi.org/10.3390/ani12172297
  2. Ajide, S. O., Opowoye, I., Makinde, O. J., Bello, Z. M., Bot, M. H., Ahmadu, A., & Adeniran, M. (2023). Workable alternatives to conventional inputs in poultry farming. Poultry Farming - New Perspectives and Applications. https://doi.org/10.5772/intechopen.110199
  3. Bovera, F., Loponte, R., Marono, S., Piccolo, G., Parisi, G., Iaconisi, V., & Nizza, A. (2016). Use of Tenebrio molitor larvae meal as a protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science 94(2): 639–647. https://doi.org/10.2527/jas.2015-9201
  4. Buccioni, A., Brajon, G., Nannucci, L., Ferrulli, V., Mannelli, F., Barone, A., & Minieri, S. (2020). Cardoon meal (Cynara cardunculus var. altilis) as an alternative protein source during the finishing period in poultry feeding. Sustainability 12(13): 5336. https://doi.org/10.3390/su12135336
  5. Cabarles, J. C. (2012). Production potentials of native chickens (Gallus gallus domesticus L.) of Western Visayas, Philippines. Tropical Animal Health and Production 45(2): 405–410. https://doi.org/10.1007/s11250-012-0230-1
  6. Caires, C. M. I., Fernandes, E., Fagundes, N., Carvalho, A. P., Maciel, M. P., & Oliveira, B. R. (2010). The use of animal byproducts in broiler feeds: Use of animal co-products in broiler diets. Revista Brasileira De Ciência Avícola, 12(1): 41–46. https://doi.org/10.1590/s1516-635x2010000100006
  7. Come, W. & Zamora, P. D. (2014). Livestock production systems in the marginal upland and lowland areas of Inopacan, Leyte, Eastern Visayas, Philippines. Annals of Tropical Research (Supplement) 2014: 199-219. https://doi.org/10.32945/atr36s14.2014
  8. Cemin, H. S., Vieira, S. L., Stefanello, C., Kipper, M., Kindlein, L., & Helmbrecht, A. (2017). Digestible lysine requirement of male broilers from 1 to 42 days of age reassessed. PLOS One 12 (6): 1–8. e0179665. https://doi.org/10.1371/journal.pone.0179665
  9. Donaldson, J., Pillay, K., Madziva, M. T., & Erlwanger, K. H. (2014). The effect of different high‐fat diets on erythrocyte osmotic fragility, growth performance, and serum lipid concentrations in males, Japanese quail (Coturnix coturnix japonica). Journal of Animal Physiology and Animal Nutrition 99(2): 281–289. https://doi.org/10.1111/jpn.12250
  10. Fabia, K., Wolski, D., Kropisz, D., Radzki, R. P., Bieńko, M., Szymańczyk, S., & Manastyrska, M. (2021). The effect of probiotic additives and Bacillus licheniformis inclusion in the diet on broiler growth. Medycyna Weterynaryjna 77(05): 6534-2021.  https://doi.org/10.21521/mw.6534
  11. Gheorghe, A., Hăbeanu, M., Lefter, N., & Mihalcea, T. (2023). Nutritional quality and valorization of Silkworm Pupae (Bombyx mori L.) in poultry diets – Review. Agriculture & Food 11(1): 256-267. https://doi.org/10.62991/af1996313979
  12. Khan, S., Khan, R. U., Alam, W., & Sultan, A. (2017). Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. Journal of Animal Physiology and Animal Nutrition 102(2): 662–668. https://doi.org/10.1111/jpn.12809
  13. Khoddami, A., Chrystal, P. V., Selle, P. H., & Liu, S. Y. (2018). Dietary starch to lipid ratios influence growth performance, nutrient utilization, and carcass traits in broiler chickens offered diets with different energy densities. PLOS One 13(10): 1–10. https://doi.org/10.1371/journal.pone.0205272
  14. Ko, H., Kang, H., Moturi, J., & Ingale, S. (2021). Supplementation of an enzyme cocktail in chicken diet is an effective approach to increase the utilization of nutrients in wheat-based diets. Journal of Animal Science and Technology 63(1): 69-76. https://doi.org/10.5187/jast.2021.e1
  15. Leinonen, I., & Kyriazakis, Ι. (2016). How can we improve the environmental sustainability of poultry production? Proceedings of the Nutrition Society 75(3): 265–273. https://doi.org/10.1017/s0029665116000094
  16. Li, H. (2020). Evaluation of the bioactivity of Butternut Squash (Cucurbita moschata D.) seeds and skin. Food Science & Nutrition 8(7): 3252-3261. https://doi.org/10.1002/fsn3.1602
  17. Liu, S. Y., Selle, P. H., Raubenheimer, D., Gous, R. M., Chrystal, P. V., Cadogan, D. J., & Cowieson, A. J. (2017). Growth performance, nutrient utilization, and carcass composition respond to dietary protein concentrations in broiler chickens, but responses are modified by dietary lipid levels. British Journal of Nutrition 118(4): 250–262.  https://doi.org/10.1017/s0007114517002070
  18. Manyeula, F., Mlambo, V., Marume, U., & Sebola, N. A. (2020). Partial replacement of soybean products with canola meal in indigenous chicken diets: The size of internal organs, carcass characteristics, and breast meat quality. Poultry Science 99(1): 256–262. https://doi.org/10.3382/ps/pez470
  19. McMurray, R., Ball, M. E. E., Linton, M., Pinkerton, L., Kelly, C., Lester, J., & Situ, C. (2022). The effects of Agrimonia pilosa Ledeb, Anemone chinensis Bunge, and Smilax glabra Roxb on broiler performance, nutrient digestibility, and gastrointestinal tract microorganisms. Animals, 12(9): 1110. https://doi.org/10.3390/ani12091110
  20. Moniño, A. M., Ibañez Jr., R. Y., & Moniño, P. D. (2023). Profitability of broiler production on diets containing Ground Peanut (Arachis hypogaea) shell as a potential alternative feed ingredient. International Journal of Multidisciplinary: Applied Business and Education Research 4(8): 2700–2705. https://doi.org/10.11594/ijmaber.04.08.02
  21. Moyo, S., Masika, P., Muchenje, V., & Jaja, F. (2020). Effect of Imbrasia belina meal on growth performance, quality characteristics, and sensory attributes of broiler chicken meat. Italian Journal of Animal Science 19(1): 1450–1461. https://doi.org/10.1080/1828051x.2020.1848463
  22. Nworgu, F. C. (2015). Centrosema (Centrosema pubescens) leaf meal as a protein supplement for broiler chick production. Journal of Experimental Biology and Agricultural Sciences 3(5): 440–447. https://doi.org/10.18006/2015.3(5).440.447
  23. Oguntoye, M. A., & Idowu, O. M. O. (2020). Effect of dietary copper and probiotic supplementation on growth performance and carcass characteristics of broiler chickens. Nigerian Journal of Animal Production 44(1): 245–253. https://doi.org/10.51791/njap.v44i1.793
  24. Oloruntola, O. D., Agbede, J. O., Onibi, G. E., & Igbasan, F. A. (2016). Replacement value of rumen liquor fermented Cassava peels for maize in growing Rabbit diet. Archivos De Zootecnia, 65(249):89–97. https://doi.org/10.21071/az.v65i249.446
  25. Omenka, R., & Anyasor, G. (2010). Vegetable-based feed formulation on poultry meat quality. African Journal of Food, Agriculture, Nutrition and Development 10(1):2001-2011. https://doi.org/10.4314/ajfand.v10i1.51474
  26. Puvača, N., Brkić, I., Jahić, M., Nikolić, S. R., Radović, G., Ivanišević, D., & Prodanović, R. (2020). The effect of using natural or biotic dietary supplements in poultry nutrition on the effectiveness of meat production. Sustainability 12(11): 4373. https://doi.org/10.3390/su12114373
  27. Ratilla, B., Bagarinao, J., & Capuno, O. (2018). Response of sweet potato to the combined application of organic and inorganic fertilizers in marginal upland. Annals of Tropical Research 40(1): 1-17. https://doi.org/10.32945/atr4011.2018
  28. Rezaeipour, V., Fononi, H., & Irani, M. (2012). Effects of dietary L-threonine and Saccharomyces cerevisiae on performance, intestinal morphology, and immune response of broiler chickens. South African Journal of Animal Science 42(3): 266–273. https://doi.org/10.4314/sajas.v42i3.8
  29. Sankara, F., Pousga, S., Dao, A. N. C., Gbemavo, C., Clottey, V., Coulibaly, K., Nacoulma, J. P., Ouedraogo, S., & Kenis, M. (2018). Indigenous knowledge and potential of termites as poultry feed in Burkina Faso. Journal of Insects as Food and Feed, 4(4), 211–218. https://doi.org/10.3920/jiff2017.0070
  30. Sanni, J. A., Sanni, G. O., Awoniyi, R. R., Osanyinlusi, R., & Richards, Y. E. (2023). Proximate and mineral composition of Atlantic Mackerel (Scomber scombrus) and Atlantic Horse Mackerel (Trachurus trachurus). Biology, Medicine, & Natural Product Chemistry 12(2): 457–461. https://doi.org/10.14421/biomedich.2023.122.457-461