Species composition and characterization of Anopheline mosquito breeding habitats in Jos- South and Shendam Local Government areas of Plateau State, Nigeria
Mamani Nagyal Joseph | Luka Isah | Eche Onah Otakpa | Namnim Nanvyat | Hayward Babale Mafuyai
Abstract:
Mosquitoes play a critical role as agents of disease transmission,
particularly where the abundance of breeding habitats supports their
proliferation. Understanding the ecology of these vectors is crucial in
assessing the potential risk of human exposure to the diseases they
transmit and in controlling them. In this study, larvae of Anopheles
mosquitoes were collected using the dip method from different habitats
in Shendam and Jos-South Local Government Areas (LGAs) of Plateau
State, Nigeria. Water physicochemical parameters were measured onsite using a handheld multi-parameter device. The larvae were reared to
adults and identified using standard identification keys. Five breeding
habitats, namely gutters, rain pools, rice fields, hoof prints, and puddles,
were characterized, and their physicochemical parameters were
analyzed. Overall, 2,513 larvae were reared to emergence as adults, with
Anopheles gambiae as the dominant species, 1,279 (50.90%), and
Anopheles pretoriensis, 175 (6.95%) (p < 0.001), the least collected
species of the four Anopheline species encountered. The most
abundant larval habitats were rice fields in Shendam LGA (51.09%) and
rain pools in Jos South LGA (43.13%) (p < 0.001). The water quality
parameters analyzed showed a negative correlation with mosquito
abundance. The R-squared value indicates that about 65.22% variation
in mosquito abundance is accounted for by the water physicochemical
parameters: temperature, pH, conductivity, total dissolved solids, and
salinity. However, the variation was not significant, F =2.25, p = (5, 6)
0.1759. For effective larval source management, initial risk mapping of
mosquito breeding sites, combined with improved knowledge of vector
ecology and their interactions with humans, should be prioritized to
inform interventions against these vectors.
References:
- Afolabi, J., Akinneye, O. J., & Igiekhume, A. M. A. (2019). Identification, abundance, and diversity of mosquitoes in Akure South Local Government Area, Ondo State, Nigeria. Journal of Basic and Applied Zoology, 80(39), 1-7. https://doi.org/10.1186/s41936-019-0112-4
- Akeju, A. V., Olusi, T. A., & Simon-Oke, I. A. (2022). Effect of physicochemical parameters on Anopheles mosquitoes’ larval composition in Akure North Local Government Area of Ondo State, Nigeria. Journal of Basic and Applied Zoology, 83(34). https://doi.org/10.1186/s41936-022-00298-3
- Bartilol, B., Omedo, I., Mbogo, C., Mwangangi, J., & Rono, M. K. (2021). Bionomics and ecology of Anopheles merus along the East and Southern Africa coast. Parasites & Vectors, 14(84). https://doi.org/10.1186/s13071-021-04582-z
- Bayoh, M. N., & Lindsay, S. W. (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93(5), 375-381. https://doi.org/10.1079/BER2003259
- Belay, A. K., Asale, A., Sole, C. L., Yusuf, A. A., Torto, B., Mutero, C. M., & Tchouassi, D. P. (2024). Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. Parasites & Vectors, 17(412). https://doi.org/10.1186/s13071-024-06496-y
- Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R., & de Jager, C. (2018). Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites & Vectors, 11(29). https://doi.org/10.1186/s13071 -017-2559-9
- Chaiphongpachara, T., Yusuk, P., Laojun, S., & Kunphichayadecha, C. (2018). Environmental factors associated with mosquito vector larvae in a malaria-endemic area in Ratchaburi Province, Thailand. The Scientific World Journal, 2018, 4519094. https://doi.org/10.1155/2018/4519094
- Coetzee, M. (2020). Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria Journal, 19, 70. https://doi.org/10.1186/s12936-020-3144-9
- Ebhodaghe, F. I., Sanchez-Vargas, I., Isaac, C., Foy, B. D., & Hemming-Schroeder, E. (2024). Sibling species of the major malaria vector Anopheles gambiae display divergent preferences for aquatic breeding sites in southern Nigeria. Malaria Journal, 23, 60. https://doi.org/10.1186/s12936-024-04871-9
- Egbuche, C. M., Onyido, A. E., Akunna, F. G., Ogbonna, C. U., Ukonze, C. B., & Ezihe, C. K. (2019). Breeding habitats of Anopheles mosquitoes in a riverine locality of Anambra State: Types, preferences, availability and productivity. The Bioscientist, 9(2), 44-61. https://bioscientistjournal.com/index.php/The_Bioscientist/article/view/96
- Emidi, B., Kisinza, W. N., Mmbando, B. P., Malima, R., & Mosha, F. W. (2017). Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasites & Vectors, 10(1), 304. https://doi.org/10.1186/s13071-01-2238-x
- Getachew, D., Balke, M., & Tekie, H. (2020). Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia. Malaria Journal, 19, 65. https://doi.org/10.1186/s12936-020-3145-8
- Hasnana, A., Che Doma, N., Rostya, H., & Say Tyong, C. (2016). Quantifying the distribution and abundance of Aedes mosquitoes in dengue risk areas of Shah Alam, Selangor. Procedia Social and Behavioral Sciences, 234, 154-163. https://doi.org/10.1016/j.sbspro.2016.10.230
- Hessou-Djossou, D., Djègbè, I., Ahadji-Dabla, K. M., Nonfodji, O. M., Tchigossou, G., Djouaka, R., Cornelie, S., Djogbenou, L., Akogbeto, M., & Chandre, F. (2022). Diversity of larval habitats of Anopheles mosquitoes in urban areas of Benin and influence of their physicochemical and bacteriological characteristics on larval density. Parasites & Vectors, 15, 207. https://doi.org/10.1186/s13071-022-05323-6
- Kipyab, P. C., Khaemba, B. M., Mwangangi, J. M., Mbogo, C. M., Beier, J. C., Zhou, G., Githeko, A. K., & Yan, G. (2015). The physicochemical and environmental factors affecting the distribution of Anopheles merus along the Kenyan coast. Parasites & Vectors, 8, 221. https://doi.org/10.1186/s13071-015-0819-0
- Kyalo, D., Amratia, P., Mundia, C. W., Mbogo, C. M., Coetzee, M., & Snow, R. W. (2017). A geocoded inventory of Anophelines in the Afrotropical region south of the Sahara: 1898-2016 Wellcome Open Research, 2(57), 1-26. https://doi.org/10.12688/wellcomeopenres. 12187.1
- Lapang, P. M., Ombugadu, A., Ishaya, M., Mafuyai, M. J., Njila, H. L., Nkup, C. D., & Mwansat, G. S. (2019). Abundance and diversity of mosquito species larvae in Shendam LGA, Plateau State, North-Central Nigeria: A panacea for vector control strategy. Journal of Zoological Research, 3(3), 25-33. https://doi.org/10.22259/2637-5575.0303004
- Mathania, M. M., Munisi, D. Z., & Silayo, R. S. (2020). Spatial and temporal distribution of Anopheles mosquito larvae and its determinants in two urban sites in Tanzania with different malaria transmission levels. Parasite Epidemiology and Control, 11, e00179. https://doi.org/10.1016/j.parepi.2020.e 00179
- Mattah, P. A. D., Futagbi, G., Amekudzi, L. K., Mattah, M. M., de Souza, D. K., Kartey-Attipoe, W. D., Bimi, L., & Wilson, M. D. (2017). Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasites & Vectors, 10, 25. https://doi.org/10.1186/s13071-016-1941-3
- Musonda, M., & Sichilima, A. F. (2019). The effects of pH and temperature parameters of water on the abundance of Anopheles mosquito larvae indifferent breeding sites of Kapiri Mposhi District of Zambia. Academic Journal of Entomology, 12(1), 14-21. https://www.researchgate.net/publication/333520062_The_Effects_of_Ph_and_Temperature_Parameters_of_Water_on_Abundance_of_Anopheles_Mosquito_Larvae_in_Different_Breeding-Sites_of_Kapiri_Mposhi_District_of_Zambia
- Mutero, C. M., Blank, H., Konradsen, F., & van der Hoek, W. (2000). Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Tropica, 76(3), 253-263. https://doi.org/10.1016/s0001-706x(00)00109-1
- Muturi, E. J., Mwangangi, J., Shililu, J., Jacob, B. G., Mbogo, C., Githure, J., & Novak, R. J. (2008). Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya. Journal of Vector Ecology, 33(1), 56-63. https://doi.org/10.3376/1081-1710(2008)33[56:efawrd]2.0.co;2
- Nanvyat, N., Mulambalah, C. S., Barshep, Y., Dakul, D. A., & Tsingalia, H. M. (2017). Retrospective analysis of malaria transmission patterns and its association with meteorological variables in lowland areas of Plateau State, Nigeria. International Journal of Mosquito Research, 4(4), 101-106. https://www.dipterajournal.com/pdf/2017/vol4issue4/PartB/4-4-10-622.pdf
- Obi, O. A., Nock, I. H., & Adebote, D. A. (2019). Biodiversity of microinvertebrates coinhabiting mosquitoes’ habitats in patchy rock pools on inselbergs within Kaduna State, Nigeria. The Journal of Basic and Applied Zoology, 80, 57. https://doi.org/10.1186/s41936-019-0125-z
- Odero, J. O., Nambunga, I. H., Wangrawa, D. W., Badolo, A., Weetman, D., Koekemoer, L. L., Ferguson, H. M., Okumu, F. O., & Baldini, F. (2023). Advances in the genetic characterization of the malaria vector Anopheles funestus, and implications for improved surveillance and control. Malaria Journal, 22, 230. https://doi.org/10.1186/s12936-023-04662-8
- Oduwole, O. A., Oduola, A. O., Oringanje, C. M., Nwachuku, N. S., Meremikwu, M. Μ., Useh, M. F., & Alaribe, A. A. dxA. (2019). Distribution of members of the Anopheles gambiae complex in selected forested tourist areas of Cross River State, Nigeria. bioRxiv. https://doi.org/10.1101/805085
- Ojianwuna, C. C., Enwemiwe, V. N., & Ekeazu, C. N. (2021). Abundance and distribution of Anopheles mosquitoes in relation to physicochemical properties in Delta State, Nigeria. FUDMA Journal of Science, 5(3), 274-280. https://fjs.fudutsinma.edu.ng.index.php/fjs/article/view/752
- Okoh, H. I., Makanjuola, W. A., Otubanjo, O. A., & Awolola, T. S. (2017). Larvicidal activity of six Nigerian plant species against Anopheles gambiae and Aedes aegypti. Nigerian Journal of Parasitology, 38(1), 111-115. https://doi.org/10.4314/njpar.v3811.20
- Okwa, 0. 0., & Savage, A. A. (2018). Oviposition and breeding water sites preferences of mosquitoes within Ojo area, Lagos State, Nigeria. Biomedical Journal of Science & Technical Research, 7(5), 1-7. https://doi.org/10.26717/BJSTR.2018.07.001565
- Ondiba, I. M., Oyieke, F. A., Athinya, D. K., Nyamongo, I. K., & Estambale, B. B. (2019).
- Larval species diversity, seasonal occurrence and larval habitat preference of mosquitoes transmitting Rift Valley fever and malaria in Baringo County, Kenya. Parasites & Vectors, 12, 295. https://doi.org/10.1186/s13071-019-3557-x
- Silver, J. B. (2007). Mosquito ecology: Field sampling methods. Springer. https://doi.org/10.1007/978-1-4020-6666-5
- Sinka, M. E., Pironon, S., Massey, N. C., Longbottom, J., Hemingway, J., Moyes, C. L., & Willis, K. J. (2020). A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedings of the National Academy of Sciences, 117(40), 24900-24908. https://doi.org/10.1073/pnas.2003976117
- Soltan-Alinejad, P., Bahrami, S., Keshavarzi, D., Shahriari-Namadi, M., Hosseinpour, A., & Soltani, A. (2023). Physicochemical characteristics of larval habitats and biodiversity of mosquitoes in one of the most important metropolises of southern Iran. Heliyon, 9(12), e22754. https://doi.org/10.1016/j.heliyon.2023. E22754
- The PMI VectorLink Project. (2022, January). The PMI VectorLink Nigeria Project annual entomology report, October 2020-September 2021. Rockville, MD: VectorLink. Abt Associates Inc. https://stacks.cdc.gov/view/cdc/146399/cdc _146399_DS1.pdf
- Vivekanandhan, P., Karthi, S., Shivakumar, M. S., & Benelli, G. (2018). Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathogens and Global Health, 112(1), 37-46. https://doi.org/10.1080/2047724.2018.14 38228
- Wang, X., Zhou, G., Zhong, D., Wang, X., Wang, Y., Yang, Z., Cui, L., & Yan, G. (2016). Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasites & Vectors, 9, 323. https://doi.org/10.1186/s13071-016-1611-5
- Wilke, A. B. B., Carvajal, A., Medina, J., Anderson, M., Nieves, V. J., Ramirez, M., Vasquez, C., Petrie, W., Cardenas, G., & Beier, J. C. (2019). Assessment of the effectiveness of BG-Sentinel traps baited with CO and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLOS ONE, 14(3), e0212688.https://doi.org/10.1371/journal.pone.0212688
- Wilkerson, R. C., Linton, Y.-M., & Strickman, D. (2021). Mosquitoes of the world. Johns Hopkins University Press. https://doi.org/10.1353/book.82515
- World Health Organization. (2019). World malaria report 2019. World Health Organization. https://www.who.int/publications/s/item/9789241565721
- World Health Organization. (2024). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/details/vector-borne-diseases
- Zogo, B., Kofi, A. A., Alou, A. P. L., Fournet, F., Dahounto, A., Dabiré, K. R., Moussa, B. L., Moiroux, N., & Pennetier, C. (2019). Identification and characterization of Anopheles spp. breeding habitats in the Korhogo area in northern Côte d’Ivoire: A study prior to Bti-based larviciding intervention. Parasites & Vectors, 12, 146. https://doi.org/10.1186/s13071-019-3404-04
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)