Screening sweetpotato (Ipomoea batatas) varieties for tolerance to waterlogging stress
Wences Rey B. Dela Peña | Ma. Lourdes S. Edaño | Eureka Teresa M. Ocampo | Ronaldo B. Saludes | Pompe C. Sta. Cruz
Abstract:
Waterlogging is one of the most damaging environmental stresses for
sweetpotato, severely constraining the growth, yield, and overall quality
of the storage roots. Hence, identifying potential waterlogging-tolerant
sweetpotato varieties plays a significant role in breeding and
sustainable crop management in areas prone to waterlogging stress. A
screenhouse trial was conducted following a split-plot design with two
main plots (waterlogging/non-waterlogging) and 15 subplot factors
(varieties) arranged in a completely randomized design. Among
waterlogging treatments, significant differences were observed in
chlorophyll content (SPAD), vine dry weight, number of storage roots,
storage root dry weight, harvest index, and root-shoot ratio. However, no
significant difference was found among waterlogging treatments in six
parameters: length of the main vine, number of lateral vines, root dry
weight, root volume, root length, and total biomass. Waterlogged plants
had lower chlorophyll content, heavier vine dry weight, fewer storage
roots per plant, and storage roots dry weight, which led to significantly
lower harvest index and root-shoot ratio. NSIC Sp36 showed higher root
dry weight and root volume, indicating root proliferation under
waterlogging stress. NSIC Sp34 showed significantly more storage
roots, while the heaviest storage roots were observed in NSIC Sp30,
indicating fewer but bigger storage roots resulting in significantly higher
total biomass, harvest index, and root-shoot ratio. This indicates NSIC
Sp30 and NSIC Sp34 have potential tolerance to waterlogging stress.
References:
- Egnin, M., Vaughan, B., & Mortley, D. (2012). Sweetpotato. In Handbook of Bioenergy Crop Plants. https://www.academia.edu/13968403/Sweetpotato
- Eguchi, T., & Yoshida, S. (2007). Effects of gas exchange inhibition and hypoxia on tuberous root morphogenesis in sweetpotato (Ipomoea batatas (L.) Lam.). Environmental Control in Biology, 45(2), 103-111. https://www.jstage.jst.go.jp/article/ecb/45/2/45_2_103/_article
- Eguchi, T., Ito, Y., & Yoshida, S. (2015). Instantaneous flooding and a-tocopherol content in tuberous roots of sweet potato (Ipomoea batatas (L.) Lam). Environmental Control in Biology, 53(1), 13-16. https://www.jstage.jst.go.jp/article/ecb/53/1/53_13/_pdf/-char/en
- Grzesiak, M. T., Janowiak, F., Szczyrek, P., Kaczanowska, K., Ostrowska, A., Rut, G., Hura, T., Rzepka, A., & Grzesiak, S. (2016). Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiologiae Plantarum, 38(5), 109. https://doi.org/10.1007/s11738-016-2128-4
- Jackson, W. A. (1967). Physiological effects of soil acidity. In R. W. Pearson & F. Adams (Eds.), Soil Acidity and Liming (Agronomy 12, pp. 43-124). https://agrosphere-international.net/Documents/DHC/Soil%20Acidity%20 and%20Liming.pdf
- Jones, B. J. J. (2001). Laboratory guides for conducting soil tests and plant analysis. CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/97814200 25293/laboratory-guide-conducting-soil-tests-plant-analysis-jr-benton-jones
- Jiang, Z., Wei, Z., Zhang, J., Zheng, C., Zhu, H., Zhai, H., He, S., Gao, S., Zhao, N., Zhang, H., & Liu, Q. (2024). Source-sink synergy is the key unlocking sweet potato starch yield potential. Nature Communications, 15, 7260. https://doi.org/10.1038/s41467-024-51727-6
- Landon, J. R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman Scientific and Technical. https://www.routledge.com/Booker-Tropical-Soil-Manual/Landon/p/book/9780582005570
- Laurie, R. N., Laurie, S. M., du Plooy, C. P., Finnie, J. F., & Van Staden, J. (2015). Yield of drought-stressed sweet potato in relation to canopy cover, stem length and stomatal conductance. Journal of Agricultural Science, 7(1), 201-214. https://www.ccsenet.org/journal/index.php/jas/article/view/41648
- Lewthwaite, S. L., & Triggs, C. M. (2000). Preliminary study on sweetpotato growth: 1. Dry matter partitioning. Agronomy New Zealand, 30, 143-149. https://www.agronomysociety.nz/files/2000_21_Sweetpotato_-_I_DM_ partitioning.pdf
- Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F., & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47(4), 417-426. https://www.research gate.net/publication/279590939
- Nguyen, L. V., Le, T. M., Ta, P. V., Tran, G. H., Rumanzi, M. S., Tang, H. T., & Nguyen, L. V. (2020). Variation in root growth responses of sweet potato to hypoxia and waterlogging. Vegetos, 33, 367-375. https://link.springer.com/article/10.10 07/s42535-020-00117-6
- Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In Methods of Soil Analysis Part //. https://www.scirp.org/reference/referencespapers?referenceid=2002898
- PCARR. Philippine Council for Agriculture and Resources Research. (1980). Standard methods of analysis for soil, plant tissue, water and fertilizer (194 p.). Farm, Resource and Systems Research Division, Los Baños, Laguna. https://books.google.com/books/about/Standard_Methods_of_Analysis_for_Soil_Pl.html?id=qX0_AAAAYAAJ
- Pepo, P. (2018). The effect of different planting methods on the yield and SPAD readings of sweet potato (Ipomoea batatas L.). Columella: Journal of Agricultural and Environmental Sciences, 5(1), 7-12. https://real.mtak.hu/81769/1/PepC3B3_Columella_vol5no12018_7_12_u.pdf
- Perata, P., Armstrong, W., & Voesenek, L. (2011). Plants and flooding stress. New Phytologist, 190(2), 269-273. https://doi.org/10.1111/j.1469-8137.2011.03702.x
- Qi, X., Li, Q., Ma, X., Qian, C., Wang, H., Ren, N., Shen, C., Huang, S., Xu, X., Xu, Q., & Chen, X. (2019). Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signaling. Plant, Cell & Environment, 42(5), 1458-1470. https://doi.org/10.111 1/pce 13504
- Ramirez, G. P. (1992). Cultivation, harvesting and storage of sweet potato products. https://www.fao.org/4/T0554E/T0554E14.htm
- Vartapetian, B. B., Andreeva, I. N., Generozova, I. P., Polyakova, L. I., Maslova, I. P., Dolgikh, Y. I., & Stepanova, A. Y. (2003). Functional electron microscopy in studies of plant responses and adaptation to anaerobic stress. Annels of Botany, 91(2), 155-172. https://doi.org/10.1093/aob/mcf244
- Vwioko, E., Adinkwu, O., & El-Esawi, M. A. (2017). Comparative physiological, biochemical, and genetic responses to prolonged waterlogging stress in okra and maize given exogenous ethylene priming. Frontiers in Physiology, 8:632 https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.20 17.00632/full
- Xu, Z., Ye, L., Shen, Q., & Zhang, G. (2024). Advances in the study of waterlogging tolerance in plants. Journal of Integrative Agriculture, 23(9), 2877-2897. https://doi.org/10.1016/j.jia.2023.12.028
- Yamauchi, T., Pedersen, O., Nakazono, M., & Tsutsumi, N. (2021). Key root traits of Poaceae for adaptation to soil water gradients. New Phytologist, 229(6), 3133-3140.https://doi.org/10.1111/nph.17093
- Yang, X. Y., Xiao, R. H., Zhang, L. X., Tang, M. J., Sun, G. Y., Du, K., Lyu, C. W., Tang, D. B., & Wang, J. C. (2025). Effects of waterlogging at different growth stages on stress-resistance physiological characteristics and yield formation of sweet potato. Acta Agronomica Sinica, 51(3), 744-754. https://zwxb.chinacrops.org/EN/Y2025/V51/13/744
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)