HomeAnnals of Tropical Researchvol. 47 no. 2 (2025)

Screening sweetpotato (Ipomoea batatas) varieties for tolerance to waterlogging stress

Wences Rey B. Dela Peña | Ma. Lourdes S. Edaño | Eureka Teresa M. Ocampo | Ronaldo B. Saludes | Pompe C. Sta. Cruz

 

Abstract:

Waterlogging is one of the most damaging environmental stresses for sweetpotato, severely constraining the growth, yield, and overall quality of the storage roots. Hence, identifying potential waterlogging-tolerant sweetpotato varieties plays a significant role in breeding and sustainable crop management in areas prone to waterlogging stress. A screenhouse trial was conducted following a split-plot design with two main plots (waterlogging/non-waterlogging) and 15 subplot factors (varieties) arranged in a completely randomized design. Among waterlogging treatments, significant differences were observed in chlorophyll content (SPAD), vine dry weight, number of storage roots, storage root dry weight, harvest index, and root-shoot ratio. However, no significant difference was found among waterlogging treatments in six parameters: length of the main vine, number of lateral vines, root dry weight, root volume, root length, and total biomass. Waterlogged plants had lower chlorophyll content, heavier vine dry weight, fewer storage roots per plant, and storage roots dry weight, which led to significantly lower harvest index and root-shoot ratio. NSIC Sp36 showed higher root dry weight and root volume, indicating root proliferation under waterlogging stress. NSIC Sp34 showed significantly more storage roots, while the heaviest storage roots were observed in NSIC Sp30, indicating fewer but bigger storage roots resulting in significantly higher total biomass, harvest index, and root-shoot ratio. This indicates NSIC Sp30 and NSIC Sp34 have potential tolerance to waterlogging stress.



References:

  1. Egnin, M., Vaughan, B., & Mortley, D. (2012). Sweetpotato. In Handbook of Bioenergy Crop Plants. https://www.academia.edu/13968403/Sweetpotato
  2. Eguchi, T., & Yoshida, S. (2007). Effects of gas exchange inhibition and hypoxia on tuberous root morphogenesis in sweetpotato (Ipomoea batatas (L.) Lam.). Environmental Control in Biology, 45(2), 103-111. https://www.jstage.jst.go.jp/article/ecb/45/2/45_2_103/_article
  3. Eguchi, T., Ito, Y., & Yoshida, S. (2015). Instantaneous flooding and a-tocopherol content in tuberous roots of sweet potato (Ipomoea batatas (L.) Lam). Environmental Control in Biology, 53(1), 13-16. https://www.jstage.jst.go.jp/article/ecb/53/1/53_13/_pdf/-char/en
  4. Grzesiak, M. T., Janowiak, F., Szczyrek, P., Kaczanowska, K., Ostrowska, A., Rut, G., Hura, T., Rzepka, A., & Grzesiak, S. (2016). Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiologiae Plantarum, 38(5), 109. https://doi.org/10.1007/s11738-016-2128-4
  5. Jackson, W. A. (1967). Physiological effects of soil acidity. In R. W. Pearson & F. Adams (Eds.), Soil Acidity and Liming (Agronomy 12, pp. 43-124). https://agrosphere-international.net/Documents/DHC/Soil%20Acidity%20 and%20Liming.pdf
  6. Jones, B. J. J. (2001). Laboratory guides for conducting soil tests and plant analysis. CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/97814200 25293/laboratory-guide-conducting-soil-tests-plant-analysis-jr-benton-jones
  7. Jiang, Z., Wei, Z., Zhang, J., Zheng, C., Zhu, H., Zhai, H., He, S., Gao, S., Zhao, N., Zhang, H., & Liu, Q. (2024). Source-sink synergy is the key unlocking sweet potato starch yield potential. Nature Communications, 15, 7260. https://doi.org/10.1038/s41467-024-51727-6
  8. Landon, J. R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Longman Scientific and Technical. https://www.routledge.com/Booker-Tropical-Soil-Manual/Landon/p/book/9780582005570
  9. Laurie, R. N., Laurie, S. M., du Plooy, C. P., Finnie, J. F., & Van Staden, J. (2015). Yield of drought-stressed sweet potato in relation to canopy cover, stem length and stomatal conductance. Journal of Agricultural Science, 7(1), 201-214. https://www.ccsenet.org/journal/index.php/jas/article/view/41648
  10. Lewthwaite, S. L., & Triggs, C. M. (2000). Preliminary study on sweetpotato growth: 1. Dry matter partitioning. Agronomy New Zealand, 30, 143-149. https://www.agronomysociety.nz/files/2000_21_Sweetpotato_-_I_DM_ partitioning.pdf
  11. Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F., & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47(4), 417-426. https://www.research gate.net/publication/279590939
  12. Nguyen, L. V., Le, T. M., Ta, P. V., Tran, G. H., Rumanzi, M. S., Tang, H. T., & Nguyen, L. V. (2020). Variation in root growth responses of sweet potato to hypoxia and waterlogging. Vegetos, 33, 367-375. https://link.springer.com/article/10.10 07/s42535-020-00117-6
  13. Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In Methods of Soil Analysis Part //. https://www.scirp.org/reference/referencespapers?referenceid=2002898
  14. PCARR. Philippine Council for Agriculture and Resources Research. (1980). Standard methods of analysis for soil, plant tissue, water and fertilizer (194 p.). Farm, Resource and Systems Research Division, Los Baños, Laguna. https://books.google.com/books/about/Standard_Methods_of_Analysis_for_Soil_Pl.html?id=qX0_AAAAYAAJ
  15. Pepo, P. (2018). The effect of different planting methods on the yield and SPAD readings of sweet potato (Ipomoea batatas L.). Columella: Journal of Agricultural and Environmental Sciences, 5(1), 7-12. https://real.mtak.hu/81769/1/PepC3B3_Columella_vol5no12018_7_12_u.pdf
  16. Perata, P., Armstrong, W., & Voesenek, L. (2011). Plants and flooding stress. New Phytologist, 190(2), 269-273. https://doi.org/10.1111/j.1469-8137.2011.03702.x
  17. Qi, X., Li, Q., Ma, X., Qian, C., Wang, H., Ren, N., Shen, C., Huang, S., Xu, X., Xu, Q., & Chen, X. (2019). Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signaling. Plant, Cell & Environment, 42(5), 1458-1470. https://doi.org/10.111 1/pce 13504
  18. Ramirez, G. P. (1992). Cultivation, harvesting and storage of sweet potato products. https://www.fao.org/4/T0554E/T0554E14.htm
  19. Vartapetian, B. B., Andreeva, I. N., Generozova, I. P., Polyakova, L. I., Maslova, I. P., Dolgikh, Y. I., & Stepanova, A. Y. (2003). Functional electron microscopy in studies of plant responses and adaptation to anaerobic stress. Annels of Botany, 91(2), 155-172. https://doi.org/10.1093/aob/mcf244
  20. Vwioko, E., Adinkwu, O., & El-Esawi, M. A. (2017). Comparative physiological, biochemical, and genetic responses to prolonged waterlogging stress in okra and maize given exogenous ethylene priming. Frontiers in Physiology, 8:632 https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.20 17.00632/full
  21. Xu, Z., Ye, L., Shen, Q., & Zhang, G. (2024). Advances in the study of waterlogging tolerance in plants. Journal of Integrative Agriculture, 23(9), 2877-2897. https://doi.org/10.1016/j.jia.2023.12.028
  22. Yamauchi, T., Pedersen, O., Nakazono, M., & Tsutsumi, N. (2021). Key root traits of Poaceae for adaptation to soil water gradients. New Phytologist, 229(6), 3133-3140.https://doi.org/10.1111/nph.17093
  23. Yang, X. Y., Xiao, R. H., Zhang, L. X., Tang, M. J., Sun, G. Y., Du, K., Lyu, C. W., Tang, D. B., & Wang, J. C. (2025). Effects of waterlogging at different growth stages on stress-resistance physiological characteristics and yield formation of sweet potato. Acta Agronomica Sinica, 51(3), 744-754. https://zwxb.chinacrops.org/EN/Y2025/V51/13/744