HomeAnnals of Tropical Researchvol. 47 no. 2 (2025)

Preliminary assessment of trace elements and toxic heavy metals in poultry feeds and the eco-health implications in Baybay City, Leyte, Philippines

Mary Margaret Daquiado | Lotis M. Balala

 

Abstract:

There has been a rapid shift in the feeding practices of backyard poultry, with increasing reliance on commercial feeds. Poultry feeds are often supplemented with trace elements to meet nutritional requirements, but can become contaminated with heavy metals during production and handling processes. This study analyzed trace elements, iron (Fe), copper (Cu), zinc (Zn), and heavy metals, lead (Pb) and cadmium (Cd), in feed samples from 10 commercial brands using microwave plasma-atomic emission spectroscopy. Results showed that Fe and Cu levels exceeded the recommended limits in most feeds, as per the Philippine Society for Animal Nutritionists (PhilSAN) and the National Research Council (NRC), with Fe being highest in layer feeds (965.83mg kg ) and Cu in booster feeds (164.26mg kg ). -1 -1 Zn levels varied, exceeding limits in most booster, grower, layer, and finisher feeds. Detectable Cd was found in booster, starter, grower, and finisher feeds, while Pb was only present in some brands of booster feeds. These findings underscore the importance of stringent regulatory guidelines for regulating trace element incorporation and ensuring feed quality.



References:

  1. Adekanmi, A. T. (2022). Health hazards of toxic and essential heavy metals from the poultry waste on human and aquatic organisms. IntechOpen. https://doi.org/10.5772/intechopen.99549
  2. Aljohani, A. S. M. (2023). Heavy metal toxicity in poultry: A comprehensive review. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1161354 Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. https://doi.org/10.1093/jxb/erx465
  3. Bartkowiak, A. (2022). Influence of heavy metals on quality of raw materials, animal products, and human and animal health status. IntechOpen. https://doi.org/10.5772/intechopen.102497
  4. Berger, L. L., & Cunha, T. J. (2006). Salt and trace minerals for livestock, poultry and other animals (8th ed.). Salt Institute. https://ftpmirror.your.org/pub/misc/cd3wd/1001/mcagvet2006DrBergersMainBookrd179840.pdf?ut m_source=chatgpt.com         
  5. Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and molecular mechanisms of plant responses to copper stress. International Journal of Molecular Science, 23(21), 12950. https://doi.org/10.3390/ijms232112950 Cooper, G. M. (2000). The cell: A molecular approach (2nd ed.). Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9921/
  6. Delgado Arroyo, M. D. M., Miralles de Imperial Hornedo, R., Alonso Peralta, F., Rodriguez Almestre, C., & Martín Sánchez, J. V. (2014). Heavy metals concentration in soil, plant, earthworm and leachate from poultry manure applied to agricultural land. Revista internacional de contaminación ambiental, 30(1), 43-50.
  7. Domel, J. R., House, G. M., Sobotik, E. B., & Archer, G. S. (2024). Evaluation of egg quality and performance in late-lay hens fed different combinations of copper, manganese, and zinc complexed with sulfate or amino acid ion. Poultry, 3(1), 36-46. https://doi.org/10.3390/poultry3010004
  8. Dong, L., Li, Y., Zhang, Y., Zhang, Y., Ren, J., Zheng, J., Diao, J., Ni, H., Yin, Y., Sun, R., Liang, F., Li, P., Zhou, C., & Yang, Y. (2023). Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Scientific Reports, 13, 10803. https://doi.org/10. 1038/s41598-023-37867-7
  9. Durso, L. M. & Cook, K. L. (2014). Impacts of antibiotic use in animal agriculture: what are the benefits and risks? Current Opinion in Microbiology, 19: 37-44. https://doi.org/10.1016/j.mib.2014.05.019.
  10. European Union. (2006). Regulation (EC) No 1831/2003 on additives for use in animal nutritional (Official Journal of the European Union).
  11. Finley, R. L., Collignon, P., Larsson, D. G. J., McEwen, S. A., Li, X., Gaze, W.H., Reid-Smith, R., Timinouni, M., Graham, D.W., & Topp, E. (2013). The scourge of antibiotic resistance: the important role of the environment. Clinical Infectious Diseases, 57(5), 704-710. https://doi.org/10.1093/cid/cit355
  12. Gaetke, L. M., & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2), 147-163. https://doi.org/10.1016/S0300 -483X(03)00159-8
  13. Gerber, P., Opio, C., & Steinfeld, H. (2008). Poultry production and the environment - A review. Rome, Italy: Animal Production and Health Division, Food and Organization of the United Nations. https://www.semanticscholar.org/paper/Poultry-production-and-the-environment-%E2%80%93-a-review-Gerber-Opio/11b57f4788910bc6263f7eebbe74c58c3eaff779
  14. Gupta, U. C., & Gupta, S. C. (1998). Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Communications in Soil Science and Plant Analysis, 29(11-14), 1491-1522. https://doi.org/10.1080/00103629809370045
  15. Han, M., Fu, X., Xin, X., Dong, Y., Miao, Z., & Li, J. (2022). High dietary organic iron supplementation decreases growth performance and induces oxidative stress in broilers. Animals, 12(13), 1604. https://doi.org/10.3390/ani12131604
  16. Herrman, T. (2001). Sampling: Procedures for feed. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. https://krex.k-state.edu/bitstream/handle/2097/21600/KSUL0010KSREIGPPUBSMF2036a.pdf ?sequence=1
  17. Korish, M. A., & Attia, Y. A. (2020). Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals (Basel), 10(4), 727. https://doi.org/10.3390/ani10040727
  18. Lee, J. & Kim, M. (2025). Availability of trace minerals in feed ingredients and supplemental sources (inorganic, organic, and nano) in broiler chickens. Journal of Animal Science and Technology, 67(4), 805-816. https://doi.org/10.5187/jast. 2024.e43
  19. Leeson, S., & Summers, J. D. (2001). Nutrition of the chicken. Belgium: University Books. https://books.google.com/books/about/Nutrition_of_the_Chicken.html?id=JlhnQ gAACAAJ
  20. Littmann, J. & Viens, A.M. (2015). The ethical significance of antimicrobial resistance. Public Health Ethics, 8(3):209-224. https://doi.org/10.1093/phe/phv025
  21. Naz, S., Idris, M., Khalique, M. A., Ur-Rahman, Z., Alhidary, A. I., Abdelrahman, Μ. Μ., Khan, R. U., Chand, N., Farooq, U., & Ahmad, S. (2016). The activity and use of zinc in poultry diets. World’s Poultry Science Journal, 72(1), 159-167. http://dx.doi.org/10.1017/S0043933915002755
  22. Nguyen, H. T. T., Kheravii, S. K., Wu, S. B., Roberts, J. R., Swick, R. A., & Toghyani, M. (2022). Sources and levels of copper affect liver copper profile, intestinal morphology and cecal microbiota population of broiler chickens fed wheat-soybean meal diets. Scientific Reports, 12(1), 2249. https://doi.org/10.1038/s41 598-022-06204-9
  23. National Research Council [NRC]. (1980). Mineral tolerance of domestic animals. Washington, D.C.: National Academies Press. https://nap.nationalacademies .org/catalog/25/mineral-tolerance-of-domestic-animals
  24. National Research Council. (2005). Mineral tolerance of animals (2nd rev. ed.). Washington, D.C.: National Academies Press. https://nap.nationalacademies. org/catalog/11309/mineral-tolerance-of-animals-second-revised-edition-2005
  25. Obi, C. N., & Ozugbo, I. J. (2007). Microbiological analyses of poultry feeds sold in Umuahia main market, Abia State, Nigeria. Journal of Radiation Research and Applied Sciences, 2(1), 22-25. https://www.researchgate.net/profile/Clifford-Obi-2/publication/328542710_Microbiological_analyses_of_Poultry_Feeds_sold_in_U muahia_Main_Market_Abia_State_Nigeria/links/5bd377a5a6fdcc3a8da91ef5/Mi crobiological-analyses-of-Poultry-Feeds-sold-in-Umuahia-Main-Market-Abia-State-Nigeria.pdf
  26. Philippine Society of Animal Nutritionists [PhilSAN]. (2010). Feed reference standards (4th ed.). Laguna, Philippines: University of the Philippines. https://pdfcoffee.com/philsan-feed-reference-standards-4th-ed-edited-pdf-free.html
  27. Rahman, M. A., Kamal, S., Salam, A., & Salam, A. (2014). Assessment of the quality of the poultry feed and its effect in poultry products in Bangladesh. Journal of Bangladesh Chemical Society, 27(1&2), 1-9. https://www.researchgate.net/publication/281207190_ASSESSMENT_OF_THE_QUALITY_OF_THE_POULTRY _FEED_AND_ITS_EFFECT_IN_POULTRY_PRODUCTS_IN_BANGLADESH
  28. Ravindran, V. (2013). Poultry feed availability and nutrition in developing countries. Poultry Development Review. https://www.fao.org/4/al703e/al703e00.pdf
  29. Richards, J.D., Zhao, J., Harrell, R. J., Atwell, C. A., & Dibner, J. J. (2010). Trace mineral nutrition in poultry and swine. Animal Bioscience, 23(11), 1527-1534. https://doi.org/10.5713/ajas.2010.г.07
  30. Scudiero, L., Tak, M., Alarcón, P., & Shankar B. (2023). Understanding household and food system determinants of chicken and egg consumption in India. Food Security, 15, 1231-1254. https://doi.org/10.1007/s12571-023-01375-3
  31. Suleiman, N., Ibitoye, E. B., Jimoh, A. A., & Sani, Z. A. (2015). Assessment of heavy metals in chicken feeds available in Sokoto, Nigeria. Sokoto Journal of Veterinary Sciences, 13(1), 17-21. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20153393135
  32. Tao, C., Wei, X., Zhang, B., Zhao, M., Wang, S., Sun, Z., Qi, D., Sun, L., Rajput, S.A., & Zhang, N. (2020). Heavy metal content in feedstuffs and feeds in Hubei Province, China. Journal of Food Protection, 83(5), 762-766.https://doi.org/10. 4315/0362-028X.JFP-18-539
  33. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671-677. https://doi.org/10.1038/nature01014
  34. US EPA. (2024, October 22). Potential well water contaminants and their impacts. U.S. Environmental Protection Agency. https://www.epa.gov/privatewells/potential-well-water-contaminants-and-their-impacts
  35. Wilson VanVoorhis, C. R., & Morgan, B. L. (2007). Understanding power and rules of thumb for determining sample sizes. Tutorials in Quantitative Methods for Psychology, 3(2), 43-50. https://doi.org/10.20982/tqmp.03.2.p043
  36. Wu, Y., Zhang, H., Liu, G., Zhang, J., Wang, J., Yu, Y., & Lu, S. (2016). Concentrations and health risk assessment of trace elements in animal-derived food in southern China. Chemosphere, 144, 564-570. https://doi.org/10.1016/j. chemosphere.2015.09.005
  37. Xie, N., Zhu, Y., Liu, H., Ye, F., & Liu, X. (2024). Impacts of different epidemic outbreaks on broiler industry chain price fluctuations in China: Implications for sustainable food development. Sustainability, 16(14), 6043. https://doi.org/10. 3390/su16146043
  38. Zhang F, Li Y, Yang M, & Li W. (2012). Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. International Journal of Environmental Research and Public Health, 9(8), 2658-2668. https://doi.org/10.3390/ijerph9082658