HomeAnnals of Tropical Researchvol. 47 no. 2 (2025)

Drying characteristics and optimization of time-temperature combination of intermittently dried sweetened jackfruit (Artocarpus heterophyllus) pulp

Julious B. Cerna | Jose F. Tarrega IV | Ivy C. Emnace

 

Abstract:

Dehydrated jackfruit pulp processing is an emerging industry in Leyte, Philippines, that still relies on traditional drying methods, resulting in slow production and inefficient energy use. This study investigated the impact of intermittent drying strategies on the drying kinetics and cost efficiency of jackfruit pulp dehydration to improve the processing method of drying jackfruit pulp. A 3×3 factorial experimental design was employed, incorporating three drying temperatures (60 C, 70 C, and 80 C) and three drying-to-tempering o o o period combinations (30:480min, 60:480min, and 90:480min). A control treatment employing a continuous drying treatment at 60 C o was also conducted. Experimental results indicated that the Page model is sufficient to describe the drying kinetics of intermittently dried jackfruit pulp. Continuous drying at 60 C achieved only 27% o moisture content (wet basis) after 480mins (8h)—substantially higher than the recommended final moisture content of 3%–20% for dehydrated fruits. In contrast, samples subjected to intermittent drying with tempering phases required only 60 to 171mins to reach comparable moisture levels, corresponding to a 64.4% to 87.5% reduction in the overall drying time. The findings demonstrated that a drying schedule consisting of a 30min drying period at 80°C, repeated for two cycles, was most effective for producing sweetened dehydrated jackfruit pulp suitable for storage. This protocol produced a final product with a safe moisture level of 14.3% (wet basis). Each drying run consumed 0.41kg of LPG and 2.01kWh of electricity, resulting in a production cost of PhP171 per kilogram of dried fruit.



References:

  1. Abonyi, B. I., Feng, H., Tang, J., Edwards, C. G., Chew, B. P., Mattinson, D. S., & Fellman, J. K. (2002). Quality retention in strawberry and carrot purees dried with Refractance Window™ systesm. Journal of Food Science, 67(3), 1051-1056. https://doi.org/10.1111/j.1365-2621.2002.tb09452.x
  2. Afolabi, I. S. (2014). Moisture migration and bulk nutrients interaction in a drying food system: A review. Food and Nutrition Sciences, 5(8), 692-714. https://doi.org/10.4236/fns.2014.58080
  3. Agricultural Marketing Service. (2019). Commodity specification for dried fruit. https://www.ams.usda.gov/sites/default/files/media/CommoditySpecificati onDried FruitAugust%202019.pdf
  4. Ampah, J., Dzisi, K. A., Addo, A., & Bart-Plange, A. (2022). Drying kinetics and chemical properties of mango. International Journal of Food Science, 2022(6243228), 1-13. https://doi.org/10.1155/2022/6243228
  5. Azzouz, S., Guizani, A., Jomaa, W., & Belghith, A. (2002). Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55(4), 323-330.https://doi.org/10.1016/s0260-8774(02)00109-7
  6. Barbosa de Lima, A. G., Delgado, J. M. P. Q., Neto, S. R. F., & Franco, C. M. R. (2016). Intermittent drying: Fundamentals, modeling and applications. In J. Delgado & A. Barbosa de Lima (Eds.), Drying and energy technologies (Vol. 63, pp. 17-42). Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_2
  7. Belhamri, A. (2003). Characterization of the first falling rate period during drying of a porous material. Drying Technology, 21(7), 1235-1252. https://doi.org/10.10 81/drt-120023178
  8. Borah, M. S., Bhagya Raj, G. V. S., Tiwari, A., & Dash, K. K. (2023). Effect of intermittent microwave convective drying on quality characteristics of persimmon fruit. Journal of Agriculture and Food Research, 14, 100816. https://doi.org/10.1016/j.jafr.2023.100816
  9. Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1974). Drying cereal grains. Westport, CT: AVI Publishing Company Inc. https://doi.org/10.1002/food.19760200143
  10. Calín-Sánchez, A., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, A. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261.https://doi.org/10.3390/foods9091261
  11. Diamante, L. M., Bai, X., & Busch, J. (2014). Fruit leathers: Method of preparation and effect of different conditions on qualities. International Journal of Food Science, 2014(139890), 1-12.https://doi.org/10.1155/2014/139890 Doloi, M. (2013). Study on thin layer drying characteristics of star fruit slices. International Journal of Agriculture and Food Science Technology, 4(7), 679-686. https://www.academia.edu/70691331/Study_on_Thin_Layer_Drying_Charac teristics_Star_Fruit_Slices#outer_page_4
  12. Dong, R., Lu, Z., Liu, Z., Koide, S., & Cao, W. (2010). Effect of drying and tempering on rice fissuring analysed by integrating intra-kernel moisture distribution. Journal of Food Engineering, 97(2), 161-167. https://doi.org/10.1016/j.jfoodeng.2009.10.005 Funebo, T., & Ohlsson, T. (1998). Microwave-assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38(3), 353-367.https://doi.org/10.10 16/s0260-8774(98)00131-9
  13. Guiné, R. P. F. (2018). The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. International Journal of Food Engineering, 4(2), 93-100. https://doi.org/10.18178/ijfe.4.2.93-100
  14. Heldman, D. R., Lund, D. B., & Sabliov, C. M. (2018). Handbook of food engineering. CRC Press. https://doi.org/10.1201/9780429449734
  15. Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic models for drying techniques-Food materials. Advances in Chemical Engineering and Science, 8(2), 27-48. https://doi.org/10.4236/aces.2018.82003
  16. Jokiniemi, T., Kautto, K., Kokin, E., & Ahokas, J. (2011). Energy efficiency measurements in grain drying. Agronomy Research Biosystem Engineering, Special Issue 1, 69-75. https://www.researchgate.net/profile/Eugen-Kokin/publication/267382051_Energy_efficiency_measurements_in_grain_d rying/links/552fdcd10cf2f2a588aae3cb/Energy-efficiency-measurements-in-grain-drying.pdf
  17. Kaushal, P., & Sharma, H. K. (2016). Osmo-convective dehydration kinetics of jackfruit (Artocarpus heterophyllus). Journal of the Saudi Society of Agricultural Sciences, 15(2), 118-126. https://doi.org/10.1016/j.jssas.2014.08.001
  18. Kowalski, S. J., & Pawłowski, A. (2011). Energy consumption and quality aspect by intermittent drying. Chemical Engineering and Processing - Process Intensification, 50(4), 384-390. https://doi.org/10.1016/j.cep.2011.02.012 Labuza, T. P. (1977). The properties of water in relationship to water binding in foods: A review 1, 2. Journal of Food Processing and Preservation, 1(2), 167-190. https://doi.org/10.1111/j.1745-4549.1977.tb00321.x Transfer, 18(1),1-14. https://doi.org/10.1016/0017-9310(75)90002-2
  19. Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition, 4(3), 384S-392S. https://doi.org/10.3945/an.112.003517 Luikov, A. V. (1975). Systems of differential equations of heat and mass transfer in capillary-porous bodies (review). International Journal of Heat and Mass
  20. Methakhup, S., Chiewchan, N., & Devahastin, S. (2005). Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. LWT, 38(6), 579-587.https://doi.org/10.1016/j.lwt.2004.08.012
  21. Nansereko, S., Muyonga, J., & Byaruhanga, Y. B. (2021). Optimization of drying conditions for jackfruit pulp using Refractance Window drying technology. Food Science & Nutrition, 10(5), 1333-1343. https://doi.org/10.1002/fsn3.2694
  22. Nansereko, S., Muyonga, J., & Byaruhanga, Y. B. (2022). Influence of drying methods on jackfruit drying behavior and dried products physical characteristics. International Journal of Food Science, 2022(8432478), 1-16. https://doi.org/10.1155/2022/8432478
  23. Ngoho, R. A., Bellen, J. A., & Cerna, J. B. (2025). Design, fabrication and evaluation of Jackfruit (Artocarpus heterophyllus, Lam.) seed sheller. International Journal of Agricultural Technology, 21(4), 1369-1378. https://doi.org/10.6336 9/ijat.2025.21.4.1369-1378
  24. Olanipekun, B. F., Tunde-Akintunde, T. Y., Oyelade, O. J., Adebisi, M. G., & Adenaya, T. A. (2014). Mathematical modeling of thin-layer pineapple drying. Journal of Food Processing and Preservation, 39(6), 1431-1441. https://doi.org/10.1111/jfpp.12362
  25. Pereira, J. C. A., Da Silva, W. P., Gomes, J. P., De Melo Queiroz, A. J., De Figueirêdo, R. M. F., Paiva, Y. F., Santos, F. S. D., De Melo, B. A., Da Silva Júnior, A. F., De Souto, L. M., Da Costa Santos, D., Farias, J. Q., & De Lima, A. G. B. (2025). Continuous and intermittent drying of osmotically pretreated melon pieces: Analysis of energy savings and preservation of bioactive compounds. Agriculture, 15(5), 480. https://doi.org/10.3390/agriculture15050480
  26. Pereira, J. C. A., Da Silva, W. P., Gomes, J. P., De Melo Queiroz, A. J., De Figueirêdo, R. M. F., De Melo, B. A., Santiago, A. M., De Lima, A. G. B., & De Macedo, A. D. B. (2020). Continuous and intermittent drying of rough rice: Effects on process effective time and effective mass diffusivity. Agriculture, 10(7), 282. https://doi.org/10.3390/agriculture10070282
  27. Polat, A., Taskin, O., & Izli, N. (2024). Assessment of freeze, continuous, and intermittent infrared drying methods for sliced persimmon. Journal of Food Science, 89(4), 2332-2346. https://doi.org/10.1111/1750-3841.16994
  28. Senadeera, W., Bhandari, B. R., Young, G., & Wijesinghe, B. (2003). Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58(3), 277-283. https://doi.org/10.1016/s0260-8774(02)00386-2
  29. Shah, A. S., Bhat, S. V., Muzaffar, K., Ibrahim, S. A., & Dar, B. N. (2022). Processing technology, chemical composition, microbial quality and health benefits of dried fruits. Current Research in Nutrition and Food Science Journal, 10(1), 71-84. https://doi.org/10.12944/crnfsj.10.1.06
  30. Shams, N. T., Arafat, N. T., & Asraf, N. A. (2024). Strategic marketing and consumer perception of dried fruit brands: The role of entrepreneurs in promoting dried fruit consumption in Bangladesh. GSC Advanced Research and Reviews, 21(2), 248-257. https://doi.org/10.30574/gscarr.2024.21.2.0357
  31. Senadeera, W., Bhandari, B. R., Young, G., & Wijesinghe, B. (2003). Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58(3), 277-283. https://doi.org/10.1016/s0260-8774(02)00386-2
  32. Shah, A. S., Bhat, S. V., Muzaffar, K., Ibrahim, S. A., & Dar, B. N. (2022). Processing technology, chemical composition, microbial quality and health benefits of dried fruits. Current Research in Nutrition and Food Science Journal, 10(1), 71-84. https://doi.org/10.12944/crnfsj.10.1.06
  33. Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323-328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
  34. Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017).Understanding the success of Page’s model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201. https://doi.org/10.1016/j.tifs.2017.01.003
  35. Tamanna, S. A., Alim, M. A., Islam, M. F., Hasan, M. R., Esrafil, M., Rahman, M. Ν., Akther, F., Haque, M. A., & Begum, R. (2023). Effect of drying methods on physicochemical quality of dehydrated jackfruit bulbs. Food and Humanity, 1, 723-730. https://doi.org/10.1016/j.foohum.2023.07.015
  36. Testa, R., Rizzo, G., Schifani, G., Tinebra, I., Farina, V., Vella, F., & Migliore, G. (2023). Can dried fruits replace unhealthy snacking among millennials? An empirical study on dried fruit consumption in Italy. Sustainability, 15(9), 7083. https://doi.org/10.3390/su15097083
  37. Unar, S. G., Khatri, S. A., Mirjat, N. H., Shaikh, P. H., Zaidi, S. A. R. A., & Arain, M. F. (2025). Solar drying technologies: A review of design, efficiency, and environmental impacts. Renewable and Sustainable Energy Reviews, 226, 116339. https://doi.org/10.1016/j.rser.2025.116339