HomeAnnals of Tropical Researchvol. 47 no. 2 (2025)

Functional, physico-chemical, and proximate properties of flours from selected NSIC-registered cassava (Manihot esculenta) varieties

Ivy C. Emnace | Eileen B. Cayetano | Arvin Villafuerte | Khyle O. Sta. Iglesia | Roberta D. Lauzon

 

Abstract:

Cassava flour is known for its functional properties that influence the consistency, texture, and stability of various food products. A singlefactor experiment arranged in a Completely Randomized Design was used to evaluate and compare the functional properties of flour from the three selected National Seed Industry Council (NSIC) registered cassava varieties: UPL Ca-2 (Lakan I), NSIC Cv-30 (Rayong 5), and NSIC Cv-48 (Rayong 72), harvested at nine months of maturity. The samples were analyzed for their functional properties, physicochemical properties, and proximate composition. The data obtained were subjected to Analysis of Variance and the Least Significant Difference test for post hoc analysis. The functional properties of the cassava flours were significantly different from each other at p < .05. UPL Ca-2 had the highest water absorption capacity and oil absorption capacity at 153.44% and 125.57%, respectively. Meanwhile, NSIC Cv-48 had the highest solubility, emulsion activity, and bulk density at 5.98%, 17.39%, and 0.572g/mL, respectively. Swelling power and emulsion stability of NSIC Cv-30 flour were the highest among the selected varieties at 15.35% and 34.15%, respectively. The pH (5.64) and titratable acidity (0.36% as lactic acid) of NSIC Cv-48 were significantly different from those of the other two varieties. The lightness (L*) of the three varieties did not differ. The (red/green) value a* ranged from -0.19 to 0.32, indicating a color leaning towards redness. However, significant variations in the (b*) yellow/blue value (7.35), Whiteness Index (91.54), and Chroma (7.36) were only observed in UPL Ca-2. Gel-formation ability of the cassava flours was visually observed, showing a difference in gel firmness. Proximate composition of the flours show a low content of fat (0.28%, 0.23%, 0.24%, respectively) and protein (1.82%, 1.24%, 1.35%, respectively) in the flours but had a high total carbohydrate (83.61%, 85.42%, and 84.61%) and ash contents (1.49%, 1.46%, and 1.49%). These findings indicate that each variety has distinct functional properties with potential industrial applications.



References:

  1. [AOAC] Association of Official Analytical Chemists. (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemists, Inc. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf
  2. Abiodun, O. A., Ayano, B., & Amanyunose, A.A. (2020). Effect of fermentation periods and storage on the chemical and physicochemical properties of biofortified cassava gari. Journal of Food Processing and Preservation, 44(12), e14958.
     https://doi.org/10.1111/jfpp.14958
  3. Adams, Z. S., Wireko Manu, F. D., Agbenorhevi, J., & Oduro, I. (2019). Improved yam–baobab–tamarind flour blends: Its potential use in extrusion cooking. Scientific African, 6, e00126.
     https://doi.org/10.1016/j.sciaf.2019.e00126
  4. Adebowale, A. A., Sanni, L. O., & Awonorin, S. O. (2005). Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Science and Technology International, 11(5), 373–382.
     https://doi.org/10.1177/1082013205058531
  5. Adeola, A. A., Odowu, M. A., Oyatogun, R. M., Adebowale, A. A., Afolabi, W. A. O., & Adigbo, S. O. (2020). Quality of cassava flour as affected by age at harvest, cropping system and variety. Agricultura Tropica et Subtropica, 53(4), 187–198.
     https://reference-global.com/article/10.2478/ats-2020-0019
  6. Aidoo, R., Oduro, I. N., Agbenorhevi, J. K., Ellis, W. O., & Pepra-Ameyaw, N. B. (2022). Physicochemical and pasting properties of flour and starch from two new cassava accessions. International Journal of Food Properties, 25(1), 561–569.
     https://doi.org/10.1080/10942912.2022.2052087
  7. Akinsola, A. O., Sunmonu, B. A., Akinola, F. D., Adeyanju, O., Taiwo-Oshin, M. A., & Gbadegesin, I. A. (2025). Functional properties and chemical composition of yellow and white cassava flours. Nutrition and Food Processing, 8(4), 1–6.
     https://doi.org/10.31579/2637-8914/301
  8. Akapata, M. I., & Akubor, P. I. (1999). Chemical composition and selected functional properties of sweet orange (Citrus sinensis) seed flour. Plant Foods for Human Nutrition, 54, 353–362. https://link.springer.com/article/10.1023/A:1008153228280
  9. Almazan, A. M. (1988). Effect of cassava flour variety and concentration on bread loaf quality. Cereal Chemistry, 67(1), 97–99. https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_97.pdf
  10. Alviola, J. N. A., & Monterde, V. G. (2018). Physicochemical and functional properties of wheat (Triticum aestivum) and selected local flours in the Philippines. Philippine Journal of Science, 147(3), 419–430.
     https://philjournalsci.dost.gov.ph/physicochemical-and-functional-properties-of-wheat-triticum-aestivum-and-selected-local-flours-in-the-philippines/
  11. Annor Frempong, I. E., Annan-Prah, A., & Wiredu, R. (1996). Cassava as a non-conventional filler in comminuted meat products. Meat Science, 44(3), 193–202.
     https://www.sciencedirect.com/science/article/pii/S0309174096000435
  12. Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51, 3669–3679. https://doi.org/10.1007/s13197-012-0915-5
  13. Aryee, F. N. A., Oduro, I., Ellis, W. O., & Afuakwa, J. J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control, 17(11), 916–922. https://doi.org/10.1016/j.foodcont.2005.06.013
  14. Awuchi, C. G., Igwe, V. S., & Echeta, C. K. (2019). The functional properties of foods and flours. International Journal of Advanced Academic Research, 5(11), 139–160.https://www.researchgate.net/publication/337403804_The_Functional_Properties_of_Foods_and_Flours
  15. Bacusmo, J. L. (2001). Status and potentials of the Philippine cassava industry.
     https://hdl.handle.net/10568/82426
  16. Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: Physical properties, processing, and functionality. Springer.
     https://doi.org/10.1007/0-387-27613-0
  17. Beninca, C., Colman, T. A. D., Lacerda, L. G., Carvalho Filho, M. A., Demiate, I. M., Bannach, G., & Schnitzler, E. (2013). Thermal, rheological, and structural behaviors of natural and modified cassava starch granules with sodium hypochlorite solutions. Journal of Thermal Analysis and Calorimetry, 111(3), 2217–2222.https://doi.org/10.1007/s10973-012-2592-z
  18. Bhattacharya, S., & Prakash, M. (1994). Extrusion of blends of rice and chickpea flours: A response surface analysis. Journal of Food Engineering, 21(3), 315–330.
     https://www.sciencedirect.com/science/article/pii/0260877494900760
  19. Bringhurst, T. A., Harrison, B. M., & Brosnan, J. (2022). Chapter 10 - Scotch whisky: Raw material selection and processing. In Whisky and Other Spirits (pp. 137–203). Academic Press.https://doi.org/10.1016/B978-0-12-822076-4.00018-8
  20. Byju, G., & Suja, G. (2020). Chapter Five - Mineral nutrition of cassava. Advances in Agronomy, 159, 169–235.
     https://doi.org/10.1016/bs.agron.2019.08.005
  21. Castillo, L. S. (1974). The cassava industry of the Philippines. In Cassava processing and storage (pp. 63–71). IDRC-031e. https://idl-bnc-idrc.dspacedirect.org/bitstreams/db306103-540f-421d-8f78-ba42442145fb/download
  22. Chandra, S., & Samsher, S. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8(38), 4849–4852.https://academicjournals.org/article/article1380886212_Chandra%2520and%2520Samsher.pdf/1000
  23. Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6), 3681–3688.
     https://doi.org/10.1007/s13197-014-1427-2
  24. Charles, A. L., Sriroth, K., & Huang, T. (2005). Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry, 92(4), 615–620.
     https://doi.org/10.1016/j.foodchem.2004.08.024
  25. Charoenrath, S., Boonsang, O., & Narkvirot, C. (1999). Biochemical composition in cassava root and physicochemical properties of starch.
     http://ciat-library.ciat.cgiar.org/articulos_ciat/cbn/Posters-PDF/PS-5/S_Charoenrath.pdf
  26. Chen, G.-X., Zhou, J.-W., Liu, Y.-L., Lu, X.-B., Han, C.-X., Zhang, W.-Y., Xu, Y.-H., & Yan, Y.-M. (2016). Biosynthesis and regulation of wheat amylose and amylopectin from proteomic and phosphoproteomic characterization of granule-binding proteins. Scientific Reports, 6, 33111. https://doi.org/10.1038/srep33111
  27. Chimphepo, L., Alamu, E. O., Monjerezi, M., Ntawuruhunga, P., & Saka, J. D. K. (2021). Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT – Food Science and Technology, 147, 111592. https://doi.org/10.1016/j.lwt.2021.111592
  28. Chisenga, S. M., Workneh, T. S., Bultosa, G., & Alimi, B. A. (2019). Progress in research and application of cassava flour and starch: A review. Journal of Food Science and Technology, 56(6), 2799–2813.
     https://doi.org/10.1007/s13197-019-03814-6
  29. Chisté, R. C., Cardoso, J. M., Silva, D. A. da, & Pena, R. da S. (2015). Hygroscopic behaviour of cassava flour from dry and water groups. Ciência Rural, 45(8), 1515–1521.
     https://doi.org/10.1590/0103-8478cr20140338
  30. Dereje, B., Girma, A., Mamo, D., & Chalchisa, T. (2020). Functional properties of sweet potato flour and its role in product development: A review. International Journal of Food Properties, 23(1), 1639–1662.
     https://doi.org/10.1080/10942912.2020.1818776
  31. Eriksson, E., Koch, K., Tortoe, C., Akonor, P. T., & Baidoo, E. (2014). Physicochemical, functional and pasting characteristics of three varieties of cassava in wheat composite flours. British Journal of Applied Science & Technology, 4(11), 1609–1621. https://doi.org/10.9734/BJAST/2014/7987
  32. Grah, B., Beda, M., Aubin, P., Niaba, K. P., & Gnakri, D. (2014). Manufacture of biscuit from the flour of wheat and lentil seeds as a food supplement. https://www.semanticscholar.org/paper/MANUFACTURE-OF-BISCUIT-FROM-THE-FLOUR-OF-WHEAT-AND-Grah-Beda/ccc656c33a3f11a3602ea48aa360fc003de6b889
  33. Gunorubon, J., & Kekpugile, K. (2012). Modification of cassava starch for industrial uses. International Journal of Engineering and Technology, 2(6). https://www.researchgate.net/profile/Jackson-Akpa/publication/263655110_Modification_of_Cassava_Starch_for_Industrial_Uses/links/00b4953b77b19d2168000000/Modification-of-Cassava-Starch-for-Industrial-Uses.pdf
  34. Harris, G. K., & Marshall, M. R. (2017). Ash analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 287–297). Springer. https://doi.org/10.1007/978-3-319-45776-5_16
  35. Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M. H. A., & Zainol, M. K. (2020). Physicochemical and functional properties of cassava flour grown in different locations in Sabah, Malaysia. Food Research, 4(4), 991–999. https://doi.org/10.26656/fr.2017.4(4).405
  36. Hayes, M. (2020). Measuring protein content in food: An overview of methods. Foods, 9(10), 1340. https://doi.org/10.3390/foods9101340
  37. Hurtada, W. A., Barrion, A. S. A., Nguyen-Orca, M. F. R., Orillo, A. T. O., Magpantay, R. L. J., Geronimo, G. D., & Rodriguez, F. M. (2020). Physicochemical properties, nutritional value, and sensory quality of cassava (Manihot esculenta Crantz) rice-like grains. Food Research, 4(5), 1623–1629. https://doi.org/10.26656/fr.2017.4(5).082
  38. Imoisi, C. (2024). Proximate composition and pasting properties of composite flours from cassava (Manihot esculenta) and millet (Panicum miliaceum). Trends in Applied Research, 19(1), 145–155. https://doi.org/10.3923/tasr.2024.145.155
  39. [IITA] International Institute of Tropical Agriculture. (1990). Cassava in tropical Africa: A reference manual (pp. 85–120). Ibadan, Nigeria. https://www.iita.org/wp-content/uploads/2016/06/Cassava_in_tropical_Africa_a_reference_manual_1990.pdf
  40. Kesselly, S., Mugabi, R., & Byaruhanga, Y. (2022). Effect of extrusion on the functional and pasting properties of high-quality cassava flour (HQCF). Journal of Food Research, 11(4), 1–12. https://ccsenet.org/journal/index.php/jfr/article/view/0/47626
  41. Kusumayanti, H., Handayani, N. A., & Santosa, H. (2015). Swelling power and water solubility of cassava and sweet potatoes flour. Procedia Environmental Sciences, 23, 164–167. https://doi.org/10.1016/j.proenv.2015.01.025
  42. Lee, C.-K., Le, Q.-T., Kim, Y.-H., Shim, J.-H., Lee, S.-J., Park, J.-H., Lee, K.-P., Song, S.-H., Auh, J. H., Lee, S.-J., & Park, K.-H. (2008). Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. Journal of Agricultural and Food Chemistry, 56(1), 126–131. https://doi.org/10.1021/jf072508s
  43. Lu, H., Guo, L., Zhang, L., Xie, C., Li, W., Gu, B., & Li, K. (2019). Study on quality characteristics of cassava flour and cassava flour short biscuits. Food Science & Nutrition, 8(1), 521–533. https://doi.org/10.1002/fsn3.1334
  44. Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch/Stärke, 54(12), 559–592. https://doi.org/10.1002/1521-379X(200212)54:12%3C559::AID-STAR2222559%3E3.0.CO;2-F
  45. Moorthy, S. N., & Ramanujam, T. (1986). Variation in properties of starch in cassava varieties in relation to age of the crop. Starch/Stärke, 38(2), 58-61. https://doi.org/10.1002/star.19860380206
  46. Murayama, D., Kasano, M., Santiago, D. M., Yamauchi, H., & Koaze, H. (2014). Effect of pre-gelatinization on the physicochemical properties of dry flours produced from 5 cassava varieties of the Philippines. Food Science and Technology Research, 20(6), 1131–1140. https://doi.org/10.3136/fstr.20.1131
  47. Nilusha, R. A. T., Jayasinghe, J. M. J. K., Perera, O. D. A. N., & Jayasinghe, C. V. L. (2021). Proximate composition, physicochemical, functional, and antioxidant properties of flours from selected cassava (Manihot esculenta Crantz) varieties. International Journal of Food Science, 2021(1), 6064545. https://doi.org/10.1155/2021/6064545
  48. Nyawose, Z., Dwarka, D., Kumar Puri, A., Bairu, M., & Mellem, J. (2022). Thermal, pasting, and hydration properties of flour from novel cassava cultivars for potential applications in the food industry. Acta Universitatis Cibiniensis Series E: Food Technology, 26(2), 237–248. https://doi.org/10.2478/aucft-2022-0019
  49. Oladunmoye, O. O., Aworh, O. C., Maziya-Dixon, B., Erukainure, O. L., & Elemo, G. N. (2014). Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends. Food Science & Nutrition, 2(2), 132–138. https://doi.org/10.1002/fsn3.83
  50. Olakanmi, S. J., Jayas, D. S., Paliwal, J., & Aluko, R. E. (2024). Impact of particle size on the physicochemical, functional, and in vitro digestibility properties of fava bean flour and bread. Foods, 13(18), 2862. https://doi.org/10.3390/foods13182862
  51. Osei Tutu, C., Amissah, J. G. N., Amissah, J. N., Akonor, P. T., Budu, A. S., & Saalia, F. K. (2024). Physical, chemical, and rheological properties of flour from accessions of Frafra potato (Solenostemon rotundifolius). Journal of Agriculture and Food Research, 15, 100974. https://doi.org/10.1016/j.jafr.2024.100974
  52. Otekunrin, O. A. (2024). Cassava (Manihot esculenta Crantz): A global scientific footprint—Production, trade, and bibliometric insights. Discover Agriculture, 2, 94. https://doi.org/10.1007/s44279-024-00121-3
  53. Oyeyinka, S. A., Ayinla, S. O., Sanusi, C. T., Akin Tayo, O. A., Oyedeji, A. B., Oladipo, J. O., Akeem, A. O., Badmos, A. H. A., Adeloye, A. A., & Diarra, S. S. (2020). Chemical and physicochemical properties of fermented flour from refrigerated cassava root and sensory properties of its cooked paste. Journal of Food Processing and Preservation, 44(9), e14684. https://doi.org/10.1111/jfpp.14684
  54. Park, J., Sung, J. M., Choi, Y.-S., & Park, J.-D. (2021). pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis. Food Hydrocolloids, 117, 106754. https://doi.org/10.1016/j.foodhyd.2021.106754
  55. Pichmony, E. K., Baner, J. M., & Ganjyal, G. M. (2020). Chapter 8 - Extrusion processing of cereal grains, tubers and seeds. In Extrusion cooking (2nd ed., pp. 225–263). Elsevier. https://doi.org/10.1016/B978-0-12-815360-4.00008-0
  56. Philippine Root Crop Research and Training Center. (n.d.). Rootcrop varieties. PhilRootCrops. Retrieved November 28, 2025, from https://philrootcrops.vsu.edu.ph/. [PNS] Philippine National Standard. (2010). PNS/BAFPS 29:2010, ICS 67.080.
  57. Renzetti, S., Henket, J., Raaijmakers, E., van den Hoek, I., & van der Sman, R. (2025). Hydrogen bond density and glass-transition temperature govern gelatinization and gel rheology in cereal and tuber starches. Current Research in Food Science, 10, 101101. https://doi.org/10.1016/j.crfs.2025.101101
  58. Roa, D. F., Santagapita, P. R., Buera, M. P., & Tolaba, M. P. (2014). Ball milling of amaranth starch-enriched fraction: Changes on particle size, starch crystallinity, and functionality as a function of milling energy. Food and Bioprocess Technology, 7(9), 2723–2731. https://doi.org/10.1007/s11947-014-1283-0
  59. Rojas, C. C., Nair, B., Herbas, A., & Bergensthal, B. (2007). Proximal composition and mineral contents of six varieties of cassava (Manihot esculenta Crantz) in Bolivia. Revista Boliviana de Química, 24(1), 70–76. https://www.redalyc.org/pdf/4263/426339669013.pdf
  60. Shifa Putri Mohidin, S. R. N., Moshawi, S., Hermansyah, A., Asmuni, M. I., Shafqat, N., & Chiau Ming, L. (2023). Cassava (Manihot esculenta Crantz): A systematic review for the pharmacological activities, traditional uses, nutritional values, and phytochemistry. Journal of Evidence-Based Integrative Medicine, 28, 1–26. https://doi.org/10.1177/2515690X231206227
  61. Shimelis, E. A., Meaza, M., & Rakshit, S. (2006). Physico-chemical properties, pasting behavior, and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agricultural Engineering International, 8, 1–19. https://doi.org/10.1177/2515690X231206227
  62. Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003).
     Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231.
     https://doi.org/10.1016/S0308-8146(02)00416-8
  63. Tester, R. F., & Morrison, W. R. (1990).
     Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67(6), 551–557.  https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_551.pdf
  64. Thaweewong, P., & Anuntagool, J. (2023).
     Change in free cyanide content of bitter cassava during incubation and drying and physical properties of dry-milled cassava flour. Food and Bioproducts Processing, 138, 139–149.
     https://doi.org/10.1016/j.fbp.2023.01.009
  65. Thaweewong, P., Chotineeranat, S., & Anuntagool, J. (2023).
     Removal of free cyanide in dry-milled cassava flour using atmospheric nonthermal plasma treatment. LWT, 181, 114761.
     https://doi.org/10.1016/j.lwt.2023.114761
  66. Tulin, E. E., Cardaño, C. M., Tulin, A. B., Loreto, M. T., Tulin, E. K. C., & Yu, M. Y. N. (2023).
     Compositional properties of flours and starches from the Philippine National Seed and Industry Council-registered root crops. Philippine Agricultural Scientist, 106(2), 143–156. https://www.ukdr.uplb.edu.ph/cgi/viewcontent.cgi?article=1040&context=pas
  67. Udoro, E. O., Anyasi, T. A., & Jideani, A. I. O. (2021).
     Process-induced modifications on quality attributes of cassava (Manihot esculenta Crantz) flour. Processes, 9(11), 1891.https://doi.org/10.3390/pr9111891
  68. Vermelho, A. B., Moreira, J. V., Junior, A. N., da Silva, C. R., Cardoso, V. da S., & Akamine, I. T. (2024).Microbial preservation and contamination control in the baking industry. Fermentation, 10(5), 231.https://doi.org/10.3390/fermentation10050231
  69. Wheat Marketing Center, Inc. (2004).Wheat and flour testing methods. Wheat Marketing Center, Inc. https://uswheat.org/wp-content/uploads/2024/07/Wheat-and-Flour-Testing-Methods-Book.pdf
  70. Wheatley, C. C., Chuzel, G., & Zakhia, N. (2003).CASSAVA | The nature of the tuber. In B. Caballero (Ed.), Encyclopedia of Food Sciences and Nutrition (2nd ed., pp. 964–969). Academic Press.https://doi.org/10.1016/B0-12-227055-X/00181-4
  71. Xiao, T., Ma, X., Hu, H., Xiang, F., Zhang, X., Zheng, Y., Dong, H., Adhikari, B., Wang, Q., & Shi, A. (2025).Advances in emulsion stability: A review on mechanisms, role of emulsifiers, and applications in food. Food Chemistry: X, 29, 102792.  https://doi.org/10.1016/j.fochx.2025.102792
  72. Yuan, T. Z., Liu, S., Reimer, M., Isaak, C., & Ai, Y. (2021).Evaluation of pasting and gelling properties of commercial flours under high heating temperatures using Rapid Visco Analyzer 4800. Food Chemistry, 344, 128616.https://doi.org/10.1016/j.foodchem.2020.128616
  73. Zainuddin, I. M., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2018).Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 142, 115–123.https://doi.org/10.1016/j.postharvbio.2017.09.004