Functional, physico-chemical, and proximate properties of flours from selected NSIC-registered cassava (Manihot esculenta) varieties
Ivy C. Emnace | Eileen B. Cayetano | Arvin Villafuerte | Khyle O. Sta. Iglesia | Roberta D. Lauzon
Abstract:
Cassava flour is known for its functional properties that influence the
consistency, texture, and stability of various food products. A singlefactor experiment arranged in a Completely Randomized Design was
used to evaluate and compare the functional properties of flour from the
three selected National Seed Industry Council (NSIC) registered cassava
varieties: UPL Ca-2 (Lakan I), NSIC Cv-30 (Rayong 5), and NSIC Cv-48
(Rayong 72), harvested at nine months of maturity. The samples were
analyzed for their functional properties, physicochemical properties, and
proximate composition. The data obtained were subjected to Analysis of
Variance and the Least Significant Difference test for post hoc analysis.
The functional properties of the cassava flours were significantly
different from each other at p < .05. UPL Ca-2 had the highest water
absorption capacity and oil absorption capacity at 153.44% and 125.57%,
respectively. Meanwhile, NSIC Cv-48 had the highest solubility, emulsion
activity, and bulk density at 5.98%, 17.39%, and 0.572g/mL, respectively.
Swelling power and emulsion stability of NSIC Cv-30 flour were the
highest among the selected varieties at 15.35% and 34.15%, respectively.
The pH (5.64) and titratable acidity (0.36% as lactic acid) of NSIC Cv-48
were significantly different from those of the other two varieties. The
lightness (L*) of the three varieties did not differ. The (red/green) value a*
ranged from -0.19 to 0.32, indicating a color leaning towards redness.
However, significant variations in the (b*) yellow/blue value (7.35),
Whiteness Index (91.54), and Chroma (7.36) were only observed in UPL
Ca-2. Gel-formation ability of the cassava flours was visually observed,
showing a difference in gel firmness. Proximate composition of the flours
show a low content of fat (0.28%, 0.23%, 0.24%, respectively) and protein
(1.82%, 1.24%, 1.35%, respectively) in the flours but had a high total
carbohydrate (83.61%, 85.42%, and 84.61%) and ash contents (1.49%,
1.46%, and 1.49%). These findings indicate that each variety has distinct
functional properties with potential industrial applications.
References:
- [AOAC] Association of Official Analytical Chemists. (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemists, Inc. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf
- Abiodun, O. A., Ayano, B., & Amanyunose, A.A. (2020). Effect of fermentation periods and storage on the chemical and physicochemical properties of biofortified cassava gari. Journal of Food Processing and Preservation, 44(12), e14958.
https://doi.org/10.1111/jfpp.14958
- Adams, Z. S., Wireko Manu, F. D., Agbenorhevi, J., & Oduro, I. (2019). Improved yam–baobab–tamarind flour blends: Its potential use in extrusion cooking. Scientific African, 6, e00126.
https://doi.org/10.1016/j.sciaf.2019.e00126
- Adebowale, A. A., Sanni, L. O., & Awonorin, S. O. (2005). Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Science and Technology International, 11(5), 373–382.
https://doi.org/10.1177/1082013205058531
- Adeola, A. A., Odowu, M. A., Oyatogun, R. M., Adebowale, A. A., Afolabi, W. A. O., & Adigbo, S. O. (2020). Quality of cassava flour as affected by age at harvest, cropping system and variety. Agricultura Tropica et Subtropica, 53(4), 187–198.
https://reference-global.com/article/10.2478/ats-2020-0019
- Aidoo, R., Oduro, I. N., Agbenorhevi, J. K., Ellis, W. O., & Pepra-Ameyaw, N. B. (2022). Physicochemical and pasting properties of flour and starch from two new cassava accessions. International Journal of Food Properties, 25(1), 561–569.
https://doi.org/10.1080/10942912.2022.2052087
- Akinsola, A. O., Sunmonu, B. A., Akinola, F. D., Adeyanju, O., Taiwo-Oshin, M. A., & Gbadegesin, I. A. (2025). Functional properties and chemical composition of yellow and white cassava flours. Nutrition and Food Processing, 8(4), 1–6.
https://doi.org/10.31579/2637-8914/301
- Akapata, M. I., & Akubor, P. I. (1999). Chemical composition and selected functional properties of sweet orange (Citrus sinensis) seed flour. Plant Foods for Human Nutrition, 54, 353–362. https://link.springer.com/article/10.1023/A:1008153228280
- Almazan, A. M. (1988). Effect of cassava flour variety and concentration on bread loaf quality. Cereal Chemistry, 67(1), 97–99. https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_97.pdf
- Alviola, J. N. A., & Monterde, V. G. (2018). Physicochemical and functional properties of wheat (Triticum aestivum) and selected local flours in the Philippines. Philippine Journal of Science, 147(3), 419–430.
https://philjournalsci.dost.gov.ph/physicochemical-and-functional-properties-of-wheat-triticum-aestivum-and-selected-local-flours-in-the-philippines/
- Annor Frempong, I. E., Annan-Prah, A., & Wiredu, R. (1996). Cassava as a non-conventional filler in comminuted meat products. Meat Science, 44(3), 193–202.
https://www.sciencedirect.com/science/article/pii/S0309174096000435
- Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51, 3669–3679. https://doi.org/10.1007/s13197-012-0915-5
- Aryee, F. N. A., Oduro, I., Ellis, W. O., & Afuakwa, J. J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control, 17(11), 916–922. https://doi.org/10.1016/j.foodcont.2005.06.013
- Awuchi, C. G., Igwe, V. S., & Echeta, C. K. (2019). The functional properties of foods and flours. International Journal of Advanced Academic Research, 5(11), 139–160.https://www.researchgate.net/publication/337403804_The_Functional_Properties_of_Foods_and_Flours
- Bacusmo, J. L. (2001). Status and potentials of the Philippine cassava industry.
https://hdl.handle.net/10568/82426
- Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: Physical properties, processing, and functionality. Springer.
https://doi.org/10.1007/0-387-27613-0
- Beninca, C., Colman, T. A. D., Lacerda, L. G., Carvalho Filho, M. A., Demiate, I. M., Bannach, G., & Schnitzler, E. (2013). Thermal, rheological, and structural behaviors of natural and modified cassava starch granules with sodium hypochlorite solutions. Journal of Thermal Analysis and Calorimetry, 111(3), 2217–2222.https://doi.org/10.1007/s10973-012-2592-z
- Bhattacharya, S., & Prakash, M. (1994). Extrusion of blends of rice and chickpea flours: A response surface analysis. Journal of Food Engineering, 21(3), 315–330.
https://www.sciencedirect.com/science/article/pii/0260877494900760
- Bringhurst, T. A., Harrison, B. M., & Brosnan, J. (2022). Chapter 10 - Scotch whisky: Raw material selection and processing. In Whisky and Other Spirits (pp. 137–203). Academic Press.https://doi.org/10.1016/B978-0-12-822076-4.00018-8
- Byju, G., & Suja, G. (2020). Chapter Five - Mineral nutrition of cassava. Advances in Agronomy, 159, 169–235.
https://doi.org/10.1016/bs.agron.2019.08.005
- Castillo, L. S. (1974). The cassava industry of the Philippines. In Cassava processing and storage (pp. 63–71). IDRC-031e. https://idl-bnc-idrc.dspacedirect.org/bitstreams/db306103-540f-421d-8f78-ba42442145fb/download
- Chandra, S., & Samsher, S. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8(38), 4849–4852.https://academicjournals.org/article/article1380886212_Chandra%2520and%2520Samsher.pdf/1000
- Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6), 3681–3688.
https://doi.org/10.1007/s13197-014-1427-2
- Charles, A. L., Sriroth, K., & Huang, T. (2005). Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry, 92(4), 615–620.
https://doi.org/10.1016/j.foodchem.2004.08.024
- Charoenrath, S., Boonsang, O., & Narkvirot, C. (1999). Biochemical composition in cassava root and physicochemical properties of starch.
http://ciat-library.ciat.cgiar.org/articulos_ciat/cbn/Posters-PDF/PS-5/S_Charoenrath.pdf
- Chen, G.-X., Zhou, J.-W., Liu, Y.-L., Lu, X.-B., Han, C.-X., Zhang, W.-Y., Xu, Y.-H., & Yan, Y.-M. (2016). Biosynthesis and regulation of wheat amylose and amylopectin from proteomic and phosphoproteomic characterization of granule-binding proteins. Scientific Reports, 6, 33111. https://doi.org/10.1038/srep33111
- Chimphepo, L., Alamu, E. O., Monjerezi, M., Ntawuruhunga, P., & Saka, J. D. K. (2021). Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT – Food Science and Technology, 147, 111592. https://doi.org/10.1016/j.lwt.2021.111592
- Chisenga, S. M., Workneh, T. S., Bultosa, G., & Alimi, B. A. (2019). Progress in research and application of cassava flour and starch: A review. Journal of Food Science and Technology, 56(6), 2799–2813.
https://doi.org/10.1007/s13197-019-03814-6
- Chisté, R. C., Cardoso, J. M., Silva, D. A. da, & Pena, R. da S. (2015). Hygroscopic behaviour of cassava flour from dry and water groups. Ciência Rural, 45(8), 1515–1521.
https://doi.org/10.1590/0103-8478cr20140338
- Dereje, B., Girma, A., Mamo, D., & Chalchisa, T. (2020). Functional properties of sweet potato flour and its role in product development: A review. International Journal of Food Properties, 23(1), 1639–1662.
https://doi.org/10.1080/10942912.2020.1818776
- Eriksson, E., Koch, K., Tortoe, C., Akonor, P. T., & Baidoo, E. (2014). Physicochemical, functional and pasting characteristics of three varieties of cassava in wheat composite flours. British Journal of Applied Science & Technology, 4(11), 1609–1621. https://doi.org/10.9734/BJAST/2014/7987
- Grah, B., Beda, M., Aubin, P., Niaba, K. P., & Gnakri, D. (2014). Manufacture of biscuit from the flour of wheat and lentil seeds as a food supplement. https://www.semanticscholar.org/paper/MANUFACTURE-OF-BISCUIT-FROM-THE-FLOUR-OF-WHEAT-AND-Grah-Beda/ccc656c33a3f11a3602ea48aa360fc003de6b889
- Gunorubon, J., & Kekpugile, K. (2012). Modification of cassava starch for industrial uses. International Journal of Engineering and Technology, 2(6). https://www.researchgate.net/profile/Jackson-Akpa/publication/263655110_Modification_of_Cassava_Starch_for_Industrial_Uses/links/00b4953b77b19d2168000000/Modification-of-Cassava-Starch-for-Industrial-Uses.pdf
- Harris, G. K., & Marshall, M. R. (2017). Ash analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 287–297). Springer. https://doi.org/10.1007/978-3-319-45776-5_16
- Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M. H. A., & Zainol, M. K. (2020). Physicochemical and functional properties of cassava flour grown in different locations in Sabah, Malaysia. Food Research, 4(4), 991–999. https://doi.org/10.26656/fr.2017.4(4).405
- Hayes, M. (2020). Measuring protein content in food: An overview of methods. Foods, 9(10), 1340. https://doi.org/10.3390/foods9101340
- Hurtada, W. A., Barrion, A. S. A., Nguyen-Orca, M. F. R., Orillo, A. T. O., Magpantay, R. L. J., Geronimo, G. D., & Rodriguez, F. M. (2020). Physicochemical properties, nutritional value, and sensory quality of cassava (Manihot esculenta Crantz) rice-like grains. Food Research, 4(5), 1623–1629. https://doi.org/10.26656/fr.2017.4(5).082
- Imoisi, C. (2024). Proximate composition and pasting properties of composite flours from cassava (Manihot esculenta) and millet (Panicum miliaceum). Trends in Applied Research, 19(1), 145–155. https://doi.org/10.3923/tasr.2024.145.155
- [IITA] International Institute of Tropical Agriculture. (1990). Cassava in tropical Africa: A reference manual (pp. 85–120). Ibadan, Nigeria. https://www.iita.org/wp-content/uploads/2016/06/Cassava_in_tropical_Africa_a_reference_manual_1990.pdf
- Kesselly, S., Mugabi, R., & Byaruhanga, Y. (2022). Effect of extrusion on the functional and pasting properties of high-quality cassava flour (HQCF). Journal of Food Research, 11(4), 1–12. https://ccsenet.org/journal/index.php/jfr/article/view/0/47626
- Kusumayanti, H., Handayani, N. A., & Santosa, H. (2015). Swelling power and water solubility of cassava and sweet potatoes flour. Procedia Environmental Sciences, 23, 164–167. https://doi.org/10.1016/j.proenv.2015.01.025
- Lee, C.-K., Le, Q.-T., Kim, Y.-H., Shim, J.-H., Lee, S.-J., Park, J.-H., Lee, K.-P., Song, S.-H., Auh, J. H., Lee, S.-J., & Park, K.-H. (2008). Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. Journal of Agricultural and Food Chemistry, 56(1), 126–131. https://doi.org/10.1021/jf072508s
- Lu, H., Guo, L., Zhang, L., Xie, C., Li, W., Gu, B., & Li, K. (2019). Study on quality characteristics of cassava flour and cassava flour short biscuits. Food Science & Nutrition, 8(1), 521–533. https://doi.org/10.1002/fsn3.1334
- Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch/Stärke, 54(12), 559–592. https://doi.org/10.1002/1521-379X(200212)54:12%3C559::AID-STAR2222559%3E3.0.CO;2-F
- Moorthy, S. N., & Ramanujam, T. (1986). Variation in properties of starch in cassava varieties in relation to age of the crop. Starch/Stärke, 38(2), 58-61. https://doi.org/10.1002/star.19860380206
- Murayama, D., Kasano, M., Santiago, D. M., Yamauchi, H., & Koaze, H. (2014). Effect of pre-gelatinization on the physicochemical properties of dry flours produced from 5 cassava varieties of the Philippines. Food Science and Technology Research, 20(6), 1131–1140. https://doi.org/10.3136/fstr.20.1131
- Nilusha, R. A. T., Jayasinghe, J. M. J. K., Perera, O. D. A. N., & Jayasinghe, C. V. L. (2021). Proximate composition, physicochemical, functional, and antioxidant properties of flours from selected cassava (Manihot esculenta Crantz) varieties. International Journal of Food Science, 2021(1), 6064545. https://doi.org/10.1155/2021/6064545
- Nyawose, Z., Dwarka, D., Kumar Puri, A., Bairu, M., & Mellem, J. (2022). Thermal, pasting, and hydration properties of flour from novel cassava cultivars for potential applications in the food industry. Acta Universitatis Cibiniensis Series E: Food Technology, 26(2), 237–248. https://doi.org/10.2478/aucft-2022-0019
- Oladunmoye, O. O., Aworh, O. C., Maziya-Dixon, B., Erukainure, O. L., & Elemo, G. N. (2014). Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends. Food Science & Nutrition, 2(2), 132–138. https://doi.org/10.1002/fsn3.83
- Olakanmi, S. J., Jayas, D. S., Paliwal, J., & Aluko, R. E. (2024). Impact of particle size on the physicochemical, functional, and in vitro digestibility properties of fava bean flour and bread. Foods, 13(18), 2862. https://doi.org/10.3390/foods13182862
- Osei Tutu, C., Amissah, J. G. N., Amissah, J. N., Akonor, P. T., Budu, A. S., & Saalia, F. K. (2024). Physical, chemical, and rheological properties of flour from accessions of Frafra potato (Solenostemon rotundifolius). Journal of Agriculture and Food Research, 15, 100974. https://doi.org/10.1016/j.jafr.2024.100974
- Otekunrin, O. A. (2024). Cassava (Manihot esculenta Crantz): A global scientific footprint—Production, trade, and bibliometric insights. Discover Agriculture, 2, 94. https://doi.org/10.1007/s44279-024-00121-3
- Oyeyinka, S. A., Ayinla, S. O., Sanusi, C. T., Akin Tayo, O. A., Oyedeji, A. B., Oladipo, J. O., Akeem, A. O., Badmos, A. H. A., Adeloye, A. A., & Diarra, S. S. (2020). Chemical and physicochemical properties of fermented flour from refrigerated cassava root and sensory properties of its cooked paste. Journal of Food Processing and Preservation, 44(9), e14684. https://doi.org/10.1111/jfpp.14684
- Park, J., Sung, J. M., Choi, Y.-S., & Park, J.-D. (2021). pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis. Food Hydrocolloids, 117, 106754. https://doi.org/10.1016/j.foodhyd.2021.106754
- Pichmony, E. K., Baner, J. M., & Ganjyal, G. M. (2020). Chapter 8 - Extrusion processing of cereal grains, tubers and seeds. In Extrusion cooking (2nd ed., pp. 225–263). Elsevier. https://doi.org/10.1016/B978-0-12-815360-4.00008-0
- Philippine Root Crop Research and Training Center. (n.d.). Rootcrop varieties. PhilRootCrops. Retrieved November 28, 2025, from https://philrootcrops.vsu.edu.ph/. [PNS] Philippine National Standard. (2010). PNS/BAFPS 29:2010, ICS 67.080.
- Renzetti, S., Henket, J., Raaijmakers, E., van den Hoek, I., & van der Sman, R. (2025). Hydrogen bond density and glass-transition temperature govern gelatinization and gel rheology in cereal and tuber starches. Current Research in Food Science, 10, 101101. https://doi.org/10.1016/j.crfs.2025.101101
- Roa, D. F., Santagapita, P. R., Buera, M. P., & Tolaba, M. P. (2014). Ball milling of amaranth starch-enriched fraction: Changes on particle size, starch crystallinity, and functionality as a function of milling energy. Food and Bioprocess Technology, 7(9), 2723–2731. https://doi.org/10.1007/s11947-014-1283-0
- Rojas, C. C., Nair, B., Herbas, A., & Bergensthal, B. (2007). Proximal composition and mineral contents of six varieties of cassava (Manihot esculenta Crantz) in Bolivia. Revista Boliviana de Química, 24(1), 70–76. https://www.redalyc.org/pdf/4263/426339669013.pdf
- Shifa Putri Mohidin, S. R. N., Moshawi, S., Hermansyah, A., Asmuni, M. I., Shafqat, N., & Chiau Ming, L. (2023). Cassava (Manihot esculenta Crantz): A systematic review for the pharmacological activities, traditional uses, nutritional values, and phytochemistry. Journal of Evidence-Based Integrative Medicine, 28, 1–26. https://doi.org/10.1177/2515690X231206227
- Shimelis, E. A., Meaza, M., & Rakshit, S. (2006). Physico-chemical properties, pasting behavior, and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agricultural Engineering International, 8, 1–19. https://doi.org/10.1177/2515690X231206227
- Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003).
Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231.
https://doi.org/10.1016/S0308-8146(02)00416-8
- Tester, R. F., & Morrison, W. R. (1990).
Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67(6), 551–557. https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_551.pdf
- Thaweewong, P., & Anuntagool, J. (2023).
Change in free cyanide content of bitter cassava during incubation and drying and physical properties of dry-milled cassava flour. Food and Bioproducts Processing, 138, 139–149.
https://doi.org/10.1016/j.fbp.2023.01.009
- Thaweewong, P., Chotineeranat, S., & Anuntagool, J. (2023).
Removal of free cyanide in dry-milled cassava flour using atmospheric nonthermal plasma treatment. LWT, 181, 114761.
https://doi.org/10.1016/j.lwt.2023.114761
- Tulin, E. E., Cardaño, C. M., Tulin, A. B., Loreto, M. T., Tulin, E. K. C., & Yu, M. Y. N. (2023).
Compositional properties of flours and starches from the Philippine National Seed and Industry Council-registered root crops. Philippine Agricultural Scientist, 106(2), 143–156. https://www.ukdr.uplb.edu.ph/cgi/viewcontent.cgi?article=1040&context=pas
- Udoro, E. O., Anyasi, T. A., & Jideani, A. I. O. (2021).
Process-induced modifications on quality attributes of cassava (Manihot esculenta Crantz) flour. Processes, 9(11), 1891.https://doi.org/10.3390/pr9111891
- Vermelho, A. B., Moreira, J. V., Junior, A. N., da Silva, C. R., Cardoso, V. da S., & Akamine, I. T. (2024).Microbial preservation and contamination control in the baking industry. Fermentation, 10(5), 231.https://doi.org/10.3390/fermentation10050231
- Wheat Marketing Center, Inc. (2004).Wheat and flour testing methods. Wheat Marketing Center, Inc. https://uswheat.org/wp-content/uploads/2024/07/Wheat-and-Flour-Testing-Methods-Book.pdf
- Wheatley, C. C., Chuzel, G., & Zakhia, N. (2003).CASSAVA | The nature of the tuber. In B. Caballero (Ed.), Encyclopedia of Food Sciences and Nutrition (2nd ed., pp. 964–969). Academic Press.https://doi.org/10.1016/B0-12-227055-X/00181-4
- Xiao, T., Ma, X., Hu, H., Xiang, F., Zhang, X., Zheng, Y., Dong, H., Adhikari, B., Wang, Q., & Shi, A. (2025).Advances in emulsion stability: A review on mechanisms, role of emulsifiers, and applications in food. Food Chemistry: X, 29, 102792. https://doi.org/10.1016/j.fochx.2025.102792
- Yuan, T. Z., Liu, S., Reimer, M., Isaak, C., & Ai, Y. (2021).Evaluation of pasting and gelling properties of commercial flours under high heating temperatures using Rapid Visco Analyzer 4800. Food Chemistry, 344, 128616.https://doi.org/10.1016/j.foodchem.2020.128616
- Zainuddin, I. M., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2018).Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 142, 115–123.https://doi.org/10.1016/j.postharvbio.2017.09.004
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)