Probiotics, prebiotics and bacteriocins as alternatives to antibiotics in the livestock industrya Philippine perspective
Rodney H. Perez
Abstract:
The widespread misuse and overuse of antibiotics in the animal
industry have significantly accelerated the emergence of
antimicrobial resistance (AMR), creating multidrug-resistant (MDR)
strains that pose a serious threat to both animal and human health.
This escalating problem risks reversing decades of medical progress,
potentially returning healthcare to a pre-antibiotic era. In response,
many countries have implemented policies restricting antibiotic use
in livestock production; however, in developing nations such as the
Philippines, enforcement remains weak due to limited resources,
inadequate training of personnel, and the lack of effective, affordable
alternatives to antibiotics. Addressing this issue requires not only
stronger regulatory frameworks but also an aggressive information
campaign that highlights the dangers of AMR and promotes
sustainable solutions. Probiotics, which have been shown to improve
animal health and productivity, represent a viable option, particularly
when combined with prebiotics that can enhance their effectiveness.
Nevertheless, challenges persist, as probiotic efficacy is highly
strain-specific, and the market is increasingly saturated with
products of unvalidated quality, often mislabeled due to weak
oversight and the proliferation of e-commerce platforms. To
maintain consumer confidence, probiotic strains must meet rigorous
safety, functionality, and technological utilitystandards, with health
benefits scientifically verified before approval. Advances in modern
molecular biotechnology, particularly genome editing tools such as
CRISPR-Cas9, offer powerful strategies to enhance probiotic strains
by eliminating virulence genes and incorporating beneficial traits,
including bacteriocin production. These genetically improved strains,
when paired with prebiotics, could provide more consistent results,
enhance livestock growth and productivity, and serve as effective,
science-based alternatives to antibiotics. By fostering innovation,
implementing stricter regulation, and promoting validated probioticprebiotic combinations, the livestock industry can reduce reliance on
antibiotics while mitigating the global threat of MDR pathogens.
References:
- Anadón, A., Martínez-Larrañaga, M. R., Ares, I., & Martínez, M. A. (2016). Chapter 55-Probiotics: Safety and Toxicity Considerations. In R. C. Gupta (Ed.), Nutraceuticals (pp. 777-798). Academic Press. https://doi.org/10.1016/8978 -0-12-802147-4.00055-3
- Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
- Aversa, Z., Atkinson, E. J., Schafer, M. J., Theiler, R. N., Rocca, W. A., Blaser, M. J., & LeBrasseur, N. K. (2021). Association of infant antibiotic exposure with childhood health outcomes. Mayo Clinic Proceedings, 96(1), 66-77. https://doi.org/10.1016/j.mayocp.2020.07.019
- Bacanlı, M. G. (2024). The two faces of antibiotics: An overview of the effects of antibiotic residues in foodstuffs. Archives of Toxicology, 98, 1717-1725. https://doi.org/10.1007/s00204-024-03760-z
- Barroga, T. R. M., Morales, R. G., Benigno, C. C., Castro, S. J. M., Caniban, M. Μ., Cabullo, M. F. B., Agunos, A., Balogh, K. D., & Dorado-Garcia, A. (2020). Antimicrobials used in backyard and commercial poultry and swine farms in the Philippines: A qualitative pilot study. Frontiers in Veterinary Science, 7, 329.https://doi.org/10.3389/fvets.2020.00329
- Ben Lagha, A., Haas, B., Gottschalk, M., & Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48, 22.https://doi.org/10.1186/s13567-017-0425-6
- Choi, M.-J., Lim, S. K., Nam, H.-M., Kim, A. R., Jung, S.-C., & Kim, M.-N. (2011). Apramycin and gentamicin resistances in indicator and clinical Escherichia coli isolates from farm animals in Korea. Foodborne Pathogens and Disease,8(1), 119-123. https://doi.org/10.1089/fpd.2010.0641
- EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Cocconcelli, P. S., Fernández Escámez, P. S., Maradona, M. P., Querol, A., Suárez, J. E., Sundh, I., Vlak, J. M., Barizzone, F., Correia, S., & Herman, L. (2020). Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017-2019). EFSA Journal, 18(2), Article e05966.https://doi.org/10.2903/j.esa.2020.5966
- Food and Agriculture Organization of the United Nations, & World Health Organization. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Joint FAO/WHO Expert Consultation Report. https://www.fao.org/3/a0512e/a0512e/pdf
- Field, D., Begley, M., O’Connor, P. M., Daly, K. M., Hugenholtz, F., Cotter, P. D., Hill, C., & Ross, R. P. (2012). Bioengineered nisin A derivatives with enhanced activity against both Gram-positive and Gram-negative pathogens. PLoS One, 7(10), e46884. https://doi.org/10.1371/journal.pone.0046884
- Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151(2), 125-140. https://doi.org/10.1016/j.ij foodmicro.2011.08.014
- Gekenidis, M.-T., Walsh, F., & Drissner, D. (2021). Tracing antibiotic resistance genes along the irrigation water chain to chive: Does tap or surface water make a difference? Antibiotics, 10(9), 1100. https://doi.org/10.3390/antibiotics10091100
- Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502. https://doi.org/10.1038/nrgastro.2017.75
- Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Zhou, H., Sanei, B., Chambers, J. R., & Sharif, S. (2006). Probiotics stimulate production of natural antibodies in chickens. Clinical and Vaccine Immunology, 13(9), 975-980. https://doi.org/10. 1128/CVI.00161-06
- Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The Genus Enterococcus: Between probiotic potential and safety concerns-An update. Frontiers in Microbiology, 9, 1791. https://doi.org/10.3389/fmicb.2018.01791
- He, Y., Liu, X., Dong, Y., Lei, J., Ito, K., & Zhang, B. (2021). Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microbial Cell Factories, 20(1), 22. https://doi.org/10.1186/s12934-021-01609-z
- Healy, B., Field, D., O’Connor, P. M., Hill, C., Cotter, P. D., & Ross, R. P. (2013). Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLOS ONE, 8(11), e79563. https://doi.org/10.1371/journal.pone.0079563
- Helm, E. T., Curry, S., Trachsel, J. M., Schroyen, M., & Gabler, N. K. (2019). Evaluating nursery pig responses to in-feed sub-therapeutic antibiotics. PLOS ONE, 14(4), e0216070.https://doi.org/10.1371/journal.pone.0216070
- Henning, C., Gautam, D., & Muriana, P. (2015). Identification of multiple bacteriocins in Enterococcus spp. using an Enterococcus-specific bacteriocin PCR array. Microorganisms, 3(1), 1-16. https://doi.org/10.3390/microorganisms3010001
- Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria: A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11(4), 979. https://doi.org/10.3390/ani11040979
- Hidalgo-Cantabrana, C., Goh, Y. J., Pan, M., Sanozky-Dawes, R., & Barrangou, R. (2019). Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proceedings of the National Academy of Sciences, 116(32), 15774-15783. https://doi.org/10.1073/pnas.1905421116
- Hou, L., Cao, S., Qiu, Y., Xiong, Y., Xiao, H., Wen, X., Yang, X., Gao, K., Wang, L., & Jiang, Z. (2022). Effects of early sub-therapeutic antibiotic administration on body tissue deposition, gut microbiota and metabolite profiles of weaned piglets. Journal of the Science of Food and Agriculture, 102(13), 5913-5924. https://doi. org/10.1002/jsfa.11942
- Islam, M. R., Shioya, K., Nagao, J., Nishie, M., Jikuya, H., Zendo, T., Nakayama, J., & Sonomoto, K. (2009). Evaluation of essential and variable residues of nukacin ISK-1 by NNK scanning. Molecular Microbiology, 72(6), 1438-1447. https://doi. org/10.1111/j.1365-2958.2009.06733.x
- Jaber, H., Ajose, D. J., Fikraoui, N., Zaazoui, N., Goulart, D. B., Bourkhiss, B., Ateba, C. N., Ouhssine, M. (2025). Assessing antibiotic residue presence in turkey meat: Insights from a four-box method analysis. BMC Microbiology, 25, Article 215.https://doi.org/10.1186/s12866-025-03936-2
- Jensen, V. F., Jakobsen, L., Emborg, H. D., Seyfarth, A. M., & Hammerum, A. M. (2006). Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli. Journal of Antimicrobial Chemotherapy, 58(1), 101-107. https://doi.org/10.1093/jac/dkl201
- Khalifa, H. O., Shikoray, L., Mohamed, M.-Y. I., Habib, I., & Matsumoto, T. (2024). Veterinary drug residues in the food chain as an emerging public health threat: Sources, analytical methods, health impacts, and preventive measures. Foods, 13(11), 1629. https://doi.org/10.3390/foods13111629
- Kumar, H., Bhardwaj, I., Nepovimova, E., Dhanjal, D. S., Shaikh, S. S., Knop, R., Atuahene, D., Shaikh, A. M., & Béla, K. (2025). Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. Journal of Agriculture and Food Research, 21, 101859. https://doi.org/10.1016/j.jafr.2025.101859
- Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331-343. https://doi.org/10.1016 /j.aninu.2017.06.007
- Marti, R., Scott, A., Tien, Y.-C., Murray, R., Sabourin, L., Zhang, Y., & Topp, E. (2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology, 79(18), 5701-5709. https://doi.org/10.1128/AEM.01682-13
- Molloy, E. M., Field, D., O’Connor, P. M., Cotter, P. D., Hill, C., & Ross, R. P. (2013). Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PLOS ONE, 8(3), e58530. https://doi.org/10.1371/journal.pone.0058530
- Niewold, T. A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Science, 86(4), 605-609. https://doi.org/10.1093/ps/86.4.605
- O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
- Perez, R. H., Aguimatang, R. H., Zendo, T., & Sonomoto, K. (2021). Bioengineering of the circular bacteriocin from Enterococcus faecium NKR-5-3 by NNK scanning to enhance its bioactivity. Journal of Microbiology, Biotechnology and Food Sciences, 11, 1-7. https://doi.org/10.15414/jmbfs.4309
- Prentza, Z., Castellone, F., Legnardi, M., Antlinger, B., Segura-Wang, M., Kefalas, G., Papaioannou, N., Stylianaki, I., Papatsiros, V. G., Franzo, G., Cecchinato, M., & Koutoulis, K. (2023). Administration of a multi-genus synbiotic to broilers: Effects on gut health, microbial composition and performance. Animals, 13(1), 113
- Rahman, R. T., Fliss, I., & Biron, E. (2022). Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics, 11(6), 766. https://doi.org/10.3390/antibiotics11060766
- Sinurat, A. P., Pasaribu, T., Purwadaria, T., Haryati, T., Wina, E., & Wardhani, T. (2020).
- Biological evaluation of some plant bioactives as feed additives to replace antibiotic growth promoters in broiler feeds. Indonesian Journal of Animal and Veterinary Sciences, 25(2), 81-90. https://doi.org/10.14334/jitv.v25i2.2501
- Song, X., Huang, H., Xiong, Z., Ai, L., & Yang, S. (2017). CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei. Applied and Environmental Microbiology, 83(22), e01259-17. https://doi.org/10.1128/AEM.0125
- Tang, K. L., Caffrey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P. E., Barkema, H. W., Polachek, A. J., Ganshorn, H., Sharma, N., Kellner, J. D., & Ghali, W. A. (2017). Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. The Lancet Planetary Health, 1(8), e316-e327.https://doi.org/10.1016/S2542-5196(17)30141-9
- U.S. Food and Drug Administration. (2018, January 4). About the GRAS notification program. U.S. Department of Health & Human Services. https://www.fda.gov/food/generally-recognized-safe-gras/about-gras-notification-program Wang, F., Sun, R., Hu, H., Duan, G., Meng, L., & Qiao, M. (2022). The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of the Total Environment, 828, 154463. https://doi.org/10.1016/j.scitotenv. 2022.154463
- Wang, J., Wang, S., Liu, H., Zhang, D., Wang, Y., & Ji, H. (2019). Effects of oligosaccharides on the growth and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of L. plantarum ZLP001 and fructo-oligosaccharide in post-weaning piglets. Journal of Animal Science, 97(11), 4588-4597.https://doi.org/10.1093/jas/skz254
- World Health Organization. (2019). Global antimicrobial resistance and use surveillance system (GLASS) report: 2019. World Health Organization. https://www.who.int/publications/i/item/9789241515061
- Yang, F., Zhang, F., Li, H., Wu, H., Zhao, H., Cheng, X., Ba, Y., Huang, H., Chen, S., & Zhu, J. (2021). Contribution of environmental factors on the distribution of antibiotic resistance genes in agricultural soil. European Journal of Soil Biology, 102, 103269. https://doi.org/10.1016/j.ejsobi.2020.1032
- Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure-Consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)