Biochemical approaches to prevent pericarp browning in Lychee fruit (Litchi chinensis) during storage: A review
David Chandra
Abstract:
Lychee fruit (Litchi chinensis) is widely known for its bright red pericarp
and delicious flesh. However, during post-harvest storage, the
commercial value of this fruit decreases due to pericarp browning. This
browning phenomenon is mainly caused by the enzymatic browning
process, which involves the activity of enzymes such as polyphenol
oxidase and peroxidase. These enzymes catalyze the oxidation of
phenolic compounds to brown pigments, which causes discoloration
of the pericarp. In addition, the degradation of anthocyanins, the
pigments that give the pericarp its red color, also contributes to the
browning. These changes are often associated with cell membrane
damage, which allows interactions between enzymes and phenolic
substrates. Several post-harvest management measures that can be
implemented to delay lychee pericarp browning include storing the fruit
at an optimum low temperature (3–5 C) with a relative humidity (RH) o
above 90–95%. Controlled atmosphere storage, typically using low
oxygen concentrations and high carbon dioxide levels, is also quite
effective. In addition to optimizing the storage temperature of lychees,
several postharvest treatments have been shown to delay pericarp
browning. These include the application of natural bioactive
compounds, ethylene inhibitors, hormonal and signaling regulators,
structural integrity enhancers, edible coatings, and organic acid or
antioxidant dips.
References:
- Adiletta, G., Di Matteo, M., & Petriccione, M. (2021). Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: A review. International Journal of Molecular Sciences, 22(5), 2633. https://doi.org/10.3390/ijms22052633
- Adiletta, G., Pasquariello, M. S., Zampella, L., Mastrobuoni, F., Scortichini, M., & Petriccione, M. (2018). Chitosan coating: A postharvest treatment to delay oxidative stress in loquat fruits during cold storage. Agronomy, 8(4), 54. https://doi.org/10.3390/agronomy8040054
- Ali, I., Abbasi, N. A., & Hafiz, I. (2021). Application of calcium chloride at different phenological stages alleviates chilling injury and delays climacteric ripening in peach fruit during low-temperature storage. International Journal of Fruit Science, 21(1), 1040-1058. https://doi.org/10.1080/15538362.2021.1975607
- Ali, S., Khan, A. S., Malik, A. U., Nawaz, A., & Shahid, M. (2018). Postharvest application of antibrowning chemicals modulates oxidative stress and delays pericarp browning of controlled atmosphere-stored litchi fruit. Journal of Food Biochemistry, 43(3), e12746. https://doi.org/10.1111/jfbc.12746
- Ali, S., Khan, A. S., Malik, A. U., & Shahid, M. (2016). Effect of controlled atmosphere storage on pericarp browning, bioactive compounds, and antioxidant enzymes of litchi fruits. Food Chemistry, 206, 18-29. https://doi.org/10.1016/j.food checm.2016.03.021
- Bolaños, E. N. A., Velázquez, R. C., Cárdenaz, A. V., Santamaría, I. R., Vera, N. G., Fuentes, A. D. H., & Silva, E. M. (2010). Effect of storage temperature and time on quality in minimally processed litchi fruit (Litchi chinensis Sonn.). Journal of Food Quality, 33(3), 269-403. https://doi.org/10.1111/j.1745-4557.2010.00324x
- Bose, S. K., Howlader, P., Jia, X., Wang, W., & Yin, H. (2019). Alginate oligosaccharide postharvest treatment preserves fruit quality and increases storage life via abscisic acid signaling in strawberry. Food Chemistry, 283, 665-674. https://doi.org/10.1016/j.foodchem.2019.01.060
- Chandra, D., Widodo, S. E., Kamal, M., & Waluyo, S. (2023a). Effect of storage temperature transfer on the internal browning and other fruit qualities of GP3 and MD2 pineapple clones after postharvest applications of ABA, chitosan, and decrowning. IOP Conference Series: Earth and Environmental Science, 1230(1), 012065. https://doi.org/10.1088/1755-1315/1230/1/012065
- Chandra, D., Widodo, S. E., Kamal, M., & Waluyo, S. (2023b). Pineapple responses to postharvest applications of ABA, chitosan, and decrowning on the severity of internal browning and other fruit qualities. Acta Innovations, 47, 64-72. https://doi.org/10.32933/Actalnnovations.47.6
- Chandra, D., Widodo, S. E., Kamal, M., & Waluyo, S. (2023c). Postharvest treatments influenced the incidence of internal browning, phenol, ABA, and GA contents of two pineapple clones. Acta Innovations, 50 (Special Issue). https://doi.org/10. 32933/Actalnnovations.50.7
- Chen, W., Zhang, Z., Shen, Y., Duan, X., & Jiang, Y. (2014). Effect of tea polyphenols on lipid peroxidation and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit during cold storage. Molecules, 19(10), 16837-16850. https://doi.org/10.3390/molecules191016837
- Deng, M., Deng, Y., Dong, L., Ma, Y., Liu, L., Huang, F., Wei, Z., Zhang, Y., Zhang, M., & Zhang, R. (2018). Effect of storage conditions on phenolic profiles and antioxidant activity of litchi pericarp. Molecules, 23(9), 2276. https://doi.org/10. 3390/molecules23092276
- Deshi, V., Homa, F., Ghatak, A., Aftab, M. A., Mir, H., Ozturk, B., & Siddiqui, M. W. (2022). Exogenous methyl jasmonate modulates antioxidant activities and delays pericarp browning in litchi. Physiology and Molecular Biology of Plants, 28(8), 1561-1569. https://doi.org/10.1007/s12298-022-01230-3
- Deshi, V., Homa, F., Tokala, V. Y., Mir, H., Aftab, M. A., & Siddiqui, M. W. (2021). Regulation of pericarp browning in cold-stored litchi fruit using methyl jasmonate. Journal of King Saud University Science, 33(5), 101445. https://doi.org/10.1016/j.jksus.2021.101445
- Fahima, A., Levinkron, S., Maytal, Y., Hugger, A., Lax, I., Huang, X., Eyal, Y., Lichter, A., Goren, M., Stern, R. A., & Harpaz-Saad, S. (2019). Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to postharvest pericarp browning. Plant Science, 283, 41-50. https://doi.org/10.1016/j.plants ci.2019.02.006
- Fang, F., Zhang, Z.-Q., Zhang, X.-L., Wu, Z.-X., Yin, H.-F., & Pang, X.-Q. (2013). Reduction in activity/gene expression of anthocyanin degradation enzymes in lychee pericarp is responsible for the color protection of the fruit by heat and acid treatment. Journal of Integrative Agriculture, 12(9), 1694-1702. https://doi.org/10.1016/S2095-3119(13)60410-4
- Guo, X., Li, Q., Luo, T., Han, D., Zhu, D., & Wu, Z. (2023). Postharvest calcium chloride treatment strengthens cell wall structure to maintain litchi fruit quality. Foods, 12(13), 2478. https://doi.org/10.3390/foods12132478
- Hossain, M. S., Ramachandraiah, K., Hasan, R., Chowdhury, R. I., Kanan, K. A., Ahmed, S., Ali, M. A., Islam, M.T., & Ahmed, M. (2021). Application of oxalic acid and 1-methylcyclopropane (1-MCP) with low- and high-density polyethylene on postharvest storage of litchi fruit. Sustainability, 13(7), 3703. https://doi.org/10.3390/su13073703
- Hu, B., Lai, B., Wang, D., Li, J., Chen, L., Qin, Y., Wang, H., Qin, Y., Hu, G., & Zhao, J. (2019). Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis. Plant and Cell Physiology, 60(2), 448-461. https://doi.org/10.1093.pcp/pcy219
- Huang, C. C., Paull, R. E., & Wang, T. T. (2024). Litchi postharvest physiology and handling. Crop Science, 64(4), 2014-2063. John Wiley & Sons, Inc. https://doi.org/10.1002/csc2.21274
- Huang, H., Wang, L., Bi, F., & Xiang, X. (2022). Combined application of malic acid and lycopene maintains content of phenols, antioxidant activity, and membrane integrity to delay the pericarp browning of litchi fruit during storage. Frontiers in Nutrition, 9, 849385. https://doi.org/10.3389/fnut.2022.849385
- Huang, K., Fu, D., Jiang, Y., Liu, H., Shi, F., Wen, Y., Cai, C., Chen, J., Ou, L., & Yan, Q. (2023). Storability and linear regression models of pericarp browning and decay in fifty litchi (Litchi chinensis Sonn.) cultivars at room temperature storage. Foods, 12(8), 1725. https://doi.org/10.3390/foods12081725
- Jamei, R., Heidari, R., Khara, J., & Zare, S. (2009). Hypoxia-induced changes in lipid peroxidation, membrane permeability, reactive oxygen species generation, and antioxidative response systems in Zea mays leaves. Turkish Journal of Biology, 33(1), 45-52. https://doi.org/10.3906/biy-0807-14
- Jiang, Y. (2000). Role of anthocyanins, polyphenol oxidase, and phenols in lychee pericarp browning. Journal of the Science of Food and Agriculture, 80(3), 305-310. https://doi.org10.1002/(SICI)1097-0010(200002)80:3<305::AID-JSFA518>3.0.CO;2-H
- Jiang, Y., & Joyce, D. C. (2003). ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regulation, 39(2), 171-174. https://doi.org/10.1023/A:1022539901044
- Jiang, Y. M., & Fu, J. R. (1999). Postharvest browning of litchi fruit by water loss and its prevention by controlled atmosphere storage at high relative humidity. LWT Food Science and Technology, 32(5), 278-283. https://doi.org/10.1006/fstl.1999. 0546
- Jing, G., Huang, H., Yang, B., Li, J., Zheng, X., & Jiang, Y. (2013). Effect of pyrogallol on the physiology and biochemistry of litchi fruit during storage. Chemistry Central Journal, 7(1), 19. https://doi.org/10.1186/1752-153X-7-19
- Kaewchana, R., Nivomlao, W., & Kanlavanarat, S. (2006). Relative humidity influences pericarp browning of litchi cv. ‘Hong Huay.’ In A. C. Purvis et al. (Eds.), Proceedings of the IVth International Conference on Managing Quality in Chains(pp. 823-827). Acta Horticulturae, 712. International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic. 2006.712.97
- Kaur, R., Kumar, A., Mahajan, B., & Javed, M. (2014). Control of pericarp browning and quality retention of litchi fruit by post-harvest treatments and modified atmosphere packaging. International Journal of Agricultural Science and Research (IJASR), 4(2), 38-50.
- Khan, M. R., Huang, C., Durrani, Y., & Muhammad, A. (2021). Chemistry of enzymatic browning in longan fruit as a function of pericarp pH and dehydration, and its prevention by essential oil: An alternative approach to So, fumigation. PeerJ, 9, e11539. https://doi.org/10.7717/peerj.11539
- Liu, J., He, C., Shen, F., Zhang, K., & Zhu, S. (2017). The crown plays an important role in maintaining quality of harvested pineapple. Postharvest Biology and Technology, 124, 18-24. https://doi.org/10.1016/j.postharvbio.2016.09.007
- Marak, K. A., Mir, H., Siddiqui, M. W., Singh, P., Homa, F., & Alamri, S. (2024). Exogenous melatonin delays oxidative browning in litchi during cold storage by regulating biochemical attributes and gene expression. Frontiers in Plant Science, 15, 1402607. https://doi.org/10.3389/fpls.2024.1402607
- Nanglia, S., Mahajan, B. V. C., Singh, N., Kapoor, S., Bhullar, K. S., Kaur, S., & Kumar, V. (2022). Combined effect of acids and shellac coating on pericarp browning, enzymatic activities, and biochemical attributes of litchi fruit during storage. Journal of Food Processing and Preservation, 46(5), e16535. https://doi.org/10. 1111/jfpp.16535
- Passafiume, R., Roppolo, P., Tinebra, I., Pirrone, A., Gaglio, R., Palazzolo, E., & Farina, V. (2023). Reduction of pericarp browning and microbial spoilage on litchi fruits in modified atmosphere packaging. Horticulturae, 9(6), 651. https://doi.org/10.3390/horticulturea9060651
- Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods, 4(4), 501-523. https://doi.org/10.3390/foods 4040501
- Pillai, A. R. S., Eapen, A. S., Zhang, W., & Roy, S. (2024). Polysaccharide-based edible biopolymer-based coatings for fruit preservation: A review. Foods, 13(10), 1529.https://doi.org/10.3390/foods13101529
- Qu, H., Duan, X., Su, X., Liu, H., & Jiang, Y. (2006). Effects of anti-ethylene treatments on browning and energy metabolism of harvested litchi fruit. Australian Journal of Experimental Agriculture, 46(8), 1085-1090. https://doi.org/10.1071/EA04238
- Romanazzi, G., Feliziani, E., & Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial, and film-forming properties. Frontiers in Microbiology, 9, 2745.https://doi.org/10.3389/fmicb.2018.02745
- Sayyari, M., Valero, D., Babalar, M., Kalantari, S., Zapata, P. J., & Serrano, M. (2010). Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2°C. Journal of Agricultural and Food Chemistry. 58(11), 6804-6808. https://doi.org/10.1021/jf100196h
- Shafique, M., Khan, A. S., Malik, A. U., & Shahid, M. (2016). Exogenous application of oxalic acid delays pericarp browning and maintains fruit quality of litchi cv. “Gola.” Journal of Food Biochemistry, 40(2), 170-179. https://doi.org/10.1111/jfbc.12207
- Silvia, D. F. P., Lins, L. C. R., Cabrini, E. C., Brasileiro, B. G., & Salomão, L. C. C. (2012). Influence of the use of acids and films in post-harvest lychee conservation. Revista Ceres, 59(6), 745-750. https://doi.org/10.1590/s0034-737X2012000600002
- Sivakumar, D., & Korsten, L. (2010). Fruit quality and physiological responses of litchi cultivar McLean’s Red to 1-methylcyclopropene pre-treatment and controlled atmosphere storage conditions. LWT Food Science and Technology, 43(6), 942-948. https://doi.org/10.1016/j.lwt.2010.02.001
- Somboonkaew, N., & Terry, L. A. (2010). Effect of packaging films on individual anthocyanins in pericarp of imported non-acid treated litchi. Acta Horticulturae, 876, 193-200. https://doi.org/10.17660/ActaHortic.2010.876.21
- Su, L. J., Zhang, J. H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z. Y. (2019). Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 2019, Article 5080843. https://doi.org/10.1155/2019/5080843
- Sultan, M. Z. (2014). Effect of postharvest coating with gum arabic on pericarp browning and desiccation of litchi fruit (Litchi chinensis Sonn.) during storage. In R. Cronje (Ed.), Proceedings of the Fourth IS on Lychee, Longan and Other Sapindaceae Fruits (pp. 345-351). Acta Horticulturae, 1029. International Society for Horticultural Science (ISHS). https://doi.org/10.17660/ActaHortic.2014.1029 43
- Wang, C., Zhang, S., Zhang, D., Li, F., Xie, L., Dai, T., & Jiang, Y. (2025). Gallic acid reduces pericarp browning of litchi fruit during storage. Postharvest Biology and Technology, 219, 113248. https://doi.org/10.1016/j.postharvbio.2024.11 3248
- Wang, J. B., Wang, X. S., & Jin, Z. Q. (2010). Enzymatic browning of postharvest litchi: A review. Acta Horticulturae, 863, 613-618. https://doi.org/10.17660/ActaHor tic.2010.863.86
- Wang, J., Liu, B., Xiao, Q., Li, H., & Sun, J. (2014). Cloning and expression analysis of litchi (Litchi chinensis Sonn.) polyphenol oxidase gene and relationship with postharvest pericarp browning. PLoS ONE, 9(4), e93982. https://doi.org/10.1371 /journal.pone.0093982
- Xiao, L., Li, T., Jiang, G., John, A., Zhang, D., Jin, W., Duan, X., & Jiang, Y. (2019). Effects of dry fog humidification on pericarp browning and quality of litchi fruit stored at low temperature. International Journal of Agricultural and Biological Engineering, 12(4), 192-196.https://doi.org/10.25165/j.ijabe.20191204.4420
- Yang, C., Lee, F.-W., Cheng, Y.-J., Chu, Y.-Y., Chen, C.-N., & Kuan, Y.-C. (2023). Chitosan coating formulated with citric acid and pomelo extract retards pericarp browning and fungal decay to extend shelf life of cold-stored lychee. Scientia Horticulturae, 310, 111735. https://doi.org/10.1016/j.scienta.2022.11 1735
- Yun, Z., Gao, H., Chen, X., Chen, Z., Zhang, Z., Li, T., Qu, H., & Jiang, Y. (2021). Effects of hydrogen water treatment on antioxidant system of litchi fruit during the pericarp browning. Food Chemistry, 336, 127618. https://doi.org/10.1016/j. foodchem.2020.127618
- Zhang, H. N., Li, W. C., Wang, H. C., Shi, S. Y., Shu, B., Liu, L. Q., Wei, Y. Z., & Xie, J. H. (2016). Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi. Frontiers in Plant Science, 7, 963. https://doi.org/10.3389/fpls.2016.00963
- Zhang, J., Chen, X., Liu, Q., Li, M., Feng, S., Lin, M., Chen, Y., & Lin, H. (2024). Slightly acidic electrolyzed water treatment enhances the quality attributes and the storability of postharvest litchis through regulating the metabolism of reactive oxygen species. Food Chemistry: X, 23, 101644. https://doi.org/10.1016/j.fochx. 2024.101644
- Zhang, Y., Huber, D. J., Hu, M., Jiang, G., Gao, Z., Xu, X., Jiang, Y., & Zhang, Z. (2018). Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, 66(28), 7475-7484. https://doi.org/10.1021/acs.jafc.8b01922
- Zhang, Z., Huber, D. J., Qu, H., Yun, Z., Wang, H., Huang, Z., Huang, H., & Jiang, Y. (2015). Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chemistry, 171, 191-199. https://doi.org/10.1016/j.foodchem.2014.09.001
- Zhang, Z., Pang, X., Ji, Z., & Jiang, Y. (2001). Role of anthocyanin degradation in litchi pericarp browning. Food Chemistry, 75(2), 217-221. https://doi.org/10.1016/S0308-8146(01)00202-3
- Zhang, Z., Pang, X., Xuewu, D., Ji, Z., & Jiang, Y. (2005). Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chemistry, 90(1-2), 47-52. https://doi.org/10.1016/j.foodchem.2004.03.023
ISSN 2704-3541 (Online)
ISSN 0116-0710 (Print)