HomeIsabela State University Linker The Journal of Emerging Research in Agriculture, Fisheries and Forestryvol. 5 no. 2 (2025)

Quantification of Nitrous Oxide, Methane, and Carbon Dioxide Emissions from Agricultural Machinery in Tropical Lowland Rice Farming Systems

Sarah B. Aquino | Joyce Anne P. Galamgam | Eva V. Eslava | Brian Jay Valdez | Fevie Rica A. Ancheta | Gerly T. Zulueta | Kay S. Olivas | Rose Mary G. Aquino

Discipline: agricultural sciences

 

Abstract:

The study quantified nitrous oxide (N?O), methane (CH?), and carbon dioxide (CO?) emissions from key agricultural machineries used in rice farming systems across the tropical lowland regions, particularly Cagayan Valley. Fuel consumption and machinery data were obtained from the Department of Agriculture – Regional Agricultural Engineering Division (DA-RAED). Emissions were estimated using IPCC Inventory Software (2006 Guidelines, Tier 1- 2 methodologies), with disaggregation by machinery, gas, and province. Total emissions from the agricultural machinery under study amounted to 143.66 Gg, dominated by hand tractors (130.71 Gg; 90.99%), followed by four-wheel drive tractors (8.37 Gg; 5.83%), rice combine harvesters (4.37 Gg; 3.04%), mechanical rice transplanters (0.10259 Gg; 0.07%), and precision seeders (0.09703 Gg 0.07%). At the provincial level of tropical lowland settings, Isabela and Cagayan recorded the highest emissions (77.75 Gg; 53.04% and 66.03 Gg; 45.02%, respectively), while Nueva Vizcaya and Quirino accounted for the lowest (1.80 Gg; 1.23% and 1.06 Gg; 0.72%, respectively). These findings highlight the environmental impact of mechanization in rice farming and emphasize the need for climate-smart strategies, including improved energy efficiency, adoption of low-emission technologies, and integration of renewable energy sources.



References:

  1. Abad, R. (2021). Rice machinery requirement in La Union, Philippines: A basis for prioritizing deployment. Recoletos Multidisciplinary Research Journal, 9(2), 129–146. https://doi.org/10.32871/rmrj2109.02.01
  2. Aquino, S., & Galamgam, J. A. (2025). Methane emission inventory from livestock and rice production in Cagayan Valley: Utilizing the IPCC Inventory Software. Linker: The Journal of Emerging Research in Agriculture, Fisheries and Forestry, 5(1), 38–55. https://doi.org/10.65141/jeraff.v5i1.n3
  3. Ayina, S., Dovonou, F. E., Hounsou, M. H., & Lihonou, B. B. (2024). Socio-environmental analysis and financial profitability of the efficiency of agricultural machinery on rice and maize fields in Benin. Journal of Experimental Agriculture International, 46(7), 1112–1124. https://doi.org/10.9734/jeai/2024/v46i72664
  4. Badua, A. E., Vargas, D. S., Baltazar, E. G., Aveno, J. L., & Excelsis, M. (2024). Adoption of mechanical seeder among rice farmers in Cagayan Valley Region, Philippines. Asian Journal of Agriculture and Rural Development, 14(4), 140–146. https://doi.org/10.55493/5005.v14i4.5221
  5. Beloev, H. I., Terziev, A. K., Iliev, I. K., & Ivanov, M. P. (2020). Energy efficiency improvement in farming equipment for agricultural holdings. IOP Conference Series: Materials Science and Engineering, 977(1), Article 012011. https://doi.org/10.1088/1757-899X/977/1/012011
  6. Damayon, S. B., Tipay, R. P., Baristo, B. M., Coballes, P. V. S., & Bayot, K. N. (2025). Farm mechanization among tenant farmers in Northern Philippines: Implications to cultural practices, gender roles, household food security, and socioeconomic status. International Journal on Science and Technology, 16(2). https://doi.org/10.71097/ijsat.v16.i2.3918  
  7. Da Silveira, F., Machado, F.P., de Farias, M.S., & Schlosser, J. F. (2023). Fuel consumption by agricultural machinery: A review of pollutant emission control technologies. Ciência Rural, 53(5). https://doi.org/10.1590/0103-8478cr20220029
  8. Eraña, I., Bareng, J. L., Balderana, O., Naval, R., Taracatac, A., Labuanan, F. R., Bose, W., Jr., Awisen, M., & Dingoasen, S. M. (2024, June 30). Development of integrated solar-powered wireless smart IoT-based water level monitoring embedded system. The Journal of Emerging Research in Agriculture, Fisheries and Forestry. https://doi.org/10.65141/jeraff.v4i1.n1
  9. Guru, P. K., Shrivastava, A. K., Tiwari, P., Khandai, S., & Chandel, N. S. (2022). Estimation of carbon emissions of agricultural machinery use in India. Oryza: An International Journal on Rice, 59(3), 260–268. https://doi.org/10.35709/ory.2022.59.3.1
  10. International Rice Research Institute. (2024). Japan and IRRI kick off rice carbon neutrality project in the ASEAN region. https://www.irri.org/news-and-events/news/japan-and-irri-kick-rice-carbon-neutrality-project-asean-region
  11. International Rice Research Institute. (2025). Southeast Asia tackles methane emissions with new low-emission rice production project. https://www.irri.org/news-and-events/news/southeast-asia-tackles-methane-emissions-new-low-emission-rice-production
  12. Jensen, T. A., Antille, D. L., & Tullberg, J. N. (2024). Improving on-farm energy use efficiency by optimizing machinery operations and management: A review. Agricultural Research. https://doi.org/10.1007/s40003-024-00824-5
  13. Kraus, D., Werner, C., Janz, B., Klatt, S., Sander, B. O., Wassmann, R., Kiese, R., & Butterbach-Bahl, K. (2022). Greenhouse gas mitigation potential of alternate wetting and drying for rice production at national scale—A modeling case study for the Philippines. Journal of Geophysical Research: Biogeosciences, 127(5). https://doi.org/10.1029/2022JG006848
  14. Lagare, J. B. (2023, June 19). PH rice farm mechanization remains slow. INQUIRER.net. https://business.inquirer.net/406205/ph-rice-farm-mechanization-remains-slow
  15. Lampridi, M., Kateris, D., Sørensen, C. G., & Bochtis, D. (2020). Energy footprint of mechanized agricultural operations. Energies, 13(3), Article 769. https://doi.org/10.3390/en13030769
  16. Malanon, H. G., & Pabuayon, I. M. (2022). Pattern and determinants of rice combine harvester adoption in Isabela, Philippines. Asian Journal of Applied Sciences, 10(5), 451–463. https://doi.org/10.24203/ajas.v10i5.7050
  17. Matsubara, T., Truong, C. T., Le, C. D., Kitaya, Y., & Maeda, Y. (2020). Transition of agricultural mechanization, agricultural economy, government policy, and environmental movement related to rice production in the Mekong Delta, Vietnam after 2010. AgriEngineering, 2(4), 649–675. https://doi.org/10.3390/agriengineering2040043
  18. Mumu, N. J., Ferdous, J., Müller, C., Ding, W., Zaman, M., & Jahangir, M. M. R. (2024). Methodological progress in the measurement of agricultural greenhouse gases. Carbon Management, 15(1). https://doi.org/10.1080/17583004.2024.2366527
  19. Sander, B. O., Schneider, P., Romasanta, R., Samoy-Pascual, K., Sibayan, E. B., Asis, C. A., & Wassmann, R. (2020). Potential of alternate wetting and drying irrigation practices for the mitigation of GHG emissions from rice fields: Two cases in Central Luzon (Philippines). Agriculture, 10(8), Article 350. https://doi.org/10.3390/agriculture10080350
  20. Scolaro, E., Beligoj, M., Estevez, M. P., Alberti, L., Renzi, M., & Mattetti, M. (2021). Electrification of agricultural machinery: A review. IEEE Access, 9, 164520–164541.
  21. Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA). (2023, August 4). SEARCA ASEAN farm consortium to cut GHG emissions, raise farmers’ income. SEARCA. https://www.searca.org/press/searca-asean-farm-consortium-cut-ghg-emissions-raise-farmers-income